DOI QR코드

DOI QR Code

Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5

Streptomyces subrutilus P5의 천연 Fe superoxide dismutase와 N-말단 6xHis-태그가 결합된 Fe superoxide dismutase의 활성비교

  • Received : 2016.05.20
  • Accepted : 2016.06.17
  • Published : 2016.06.30

Abstract

This study was carried out to analyze the differences in enzyme activity and stability between the native Fe superoxide dismutase (FeSOD) and the 6xHis-tagged superoxide dismutase (6xHis-FeSOD) of Streptomyces subrutilus P5. The optimum pHs for both native FeSOD and 6xHis-FeSOD were 7, while the pH range of the activity was narrower for the 6xHis-FeSOD. The native FeSOD was stable at pH 4-9, but the 6xHis-FeSOD lost its stability at pH > 9. The temperatures of the optimum activities were same for both types of enzymes. However, the heat stability of the 6xHis-FeSOD was clearly decreased; even at $20^{\circ}C$ the enzyme lost the activity after 360 min. In contrast, the native FeSOD was stable after 720 min at below $40^{\circ}C$. $H_2O_2$ inhibition was occurred already at 0.5 mM for the 6xHis-tagged enzyme. Therefore, from the results that the 6xHis-FeSOD retained the enzyme activity at pH 6-7 and $20-40^{\circ}C$, it can be assumed that the protein structure became destabilized under different storage conditions and sensitive to the enzyme inhibitor.

본 연구는 Streptomyces subrutilus P5의 천연 Fe superoxide dismutase (FeSOD)와 유전자 재조합 기술로 생산된 6xHis-태그가 결합된 Fe superoxide dismutase (6xHis- FeSOD)의 활성을 비교하여 6xHis-태그의 효소에 대한 영향을 알아보기 위하여 수행되었다. 두 효소 모두 최적 pH는 7로 동일하였으나 6xHis-태그에 의해서 pH 범위는 축소되었다. 천연 효소는 pH 4-9의 범위에서 안정성을 보인 반면 6xHis-FeSOD는 pH 9에서 안정성이 상실되었다. 두 효소의 최적 온도는 차이가 없으나 열 안정성에 있어서는 천연 효소는 $40^{\circ}C$ 이하에서 720분까지 안정성을 유지하였으나 6xHis-FeSOD는 $20^{\circ}C$에서도 360분 이내에 활성을 잃는 것으로 나타났다. $H_2O_2$의 6xHis-FeSOD에 대한 저해는 0.5 mM에서 나타났다. 따라서 6xHis-FeSOD는 효소활성은 유지되더라도 열 안정성이 크게 감소되는 결과를 얻었다. 이것은 6xHis-태그가 활성부위 보다는 단백질 전체 구조에 더 많은 영향을 미친 결과라고 생각되었다.

Keywords

References

  1. Ames, B.N. and Shigenaga, M.K. 1993. Oxidant are a major contributor to cancer and aging. pp. 1-15. In Halliwell, B. and Arouma, O.I. (eds.) DNA and Free Radicals. Ellis-Horwlld, New York, USA.
  2. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  3. Carson, M., Johnson, D.H., McDonald, H., Brouillette, C., and DeLucas, L.J. 2007. His-tag impact on structure. Acta Crystallogr. Sect D: Biol. Crystallogr. 63, 295-301. https://doi.org/10.1107/S0907444906052024
  4. Chant, A., Kraemer-Pecore, C.M., Watkin, R., and Kneale, G.G. 2005. Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr. Purif. 39, 152-159. https://doi.org/10.1016/j.pep.2004.10.017
  5. Desai, K. and Sivakami, S. 2007. Purification and biochemical characterization of a SOD from the soluble fraction of the cyanobacterium, Spirulina platensis. World J. Microbiol. Biotechnol. 23, 1661-1666. https://doi.org/10.1007/s11274-007-9413-8
  6. Farr, S.B. and Kogoma, T. 1991. Oxidative stress in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55, 561-568.
  7. Halliwell, B. and Gutteridge, J.M.C. 1999. Free radical and toxicity. pp. 299-365. In Free Radicals in Biology and Medicine, Claredon Press, Oxford, UK.
  8. Horng, J.C., Cho, J.H., and Raleigh, D.P. 2004. Analysis of the pH-dependent and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. J. Mol. Biol. 345, 163-173.
  9. Khan, F., Legler, P.M., Mease, R.M., Duncan, E.H., Bergmann-Leitner, E.S., and Angov, E. 2012. Histidine affinity tags affect MSP1(42) structural stability and immunodominance in mice. Biotechnol. J. 7, 133-147. https://doi.org/10.1002/biot.201100331
  10. Kim, J., Han, K., Jung, H., and Lee, J. 2014. Iron containing superoxide dismutase of Streptomyces subrutilus P5 increases bacterial heavy metal resistance by sequestration. Korean J. Microbiol. 50, 179-184. https://doi.org/10.7845/kjm.2014.4053
  11. Klose, J., Wendt, N., Kubald, S., Krause, E., Fechner, K., Beyermann, M., Bienert, M., Rudolph, R., and Rothemund, S. 2004. Hexahistidine tag position influences disulfide structure but not binding behavior of in vitro folded N-terminal domain of rat corticotropin-releasing factor receptor type 2a. Protein Sci. 13, 2470-2475. https://doi.org/10.1110/ps.04835904
  12. Lin, C.T., Lin, M.T., Chen, Y.T., and Shaw, J.F. 1995. Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-SOD purified by a His-tagged recombinant protein method. Plant Mol. Biol. 28, 303-311. https://doi.org/10.1007/BF00020249
  13. Lupi, A., Della Torre, S., Campari, E., Tenni, R., Cetta, G., Rossi, A., and Forlino, A. 2006. Human recombinant prolidase from eukaryotic and prokaryotic sources. FEBS J. 273, 5466-5478. https://doi.org/10.1111/j.1742-4658.2006.05538.x
  14. Miller, A.F. 2004. Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol. 8, 162-168. https://doi.org/10.1016/j.cbpa.2004.02.011
  15. Panek, A., Pietrow, O., Filipkowski, P., and Synowiecki, J. 2013. Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Acta Biochim. Pol. 60, 163-166.
  16. Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8, 151-156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  17. Sato, S. and Raleigh, D.P. 2002. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J. Mol. Biol. 318, 571-582. https://doi.org/10.1016/S0022-2836(02)00015-3
  18. Sayari, A., Mosbah, H., Verger, R., and Gargouri, Y. 2007. The N-terminal His-tag affects the enantioselectivity of staphylococcal lipases: A monolayer study. J. Colloid Interface Sci. 313, 261-267. https://doi.org/10.1016/j.jcis.2007.04.053
  19. So, N.W., Rho, J.Y., Lee, S.Y., Hancock, I.C., and Kim, J.H. 2001. A lead-absorbing protein with SOD activity from Streptomyces subrutilus. FEMS Microbiol. Lett. 194, 93-98. https://doi.org/10.1111/j.1574-6968.2001.tb09452.x
  20. Van Gelder, P., Steiert, M., Khattabi, M., Rosenbusch, J.P., and Tommassen, J. 1996, Structural and functional characterization of a His-tagged PhoE pore protein of Escherichia coli. Biochem. Biophys. Res. Commun. 229, 869-875. https://doi.org/10.1006/bbrc.1996.1894
  21. Zhao, G., Jin, Z., Allewell, N.M., Tuchman, M., and Shi, D. 2015. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate. Acta Crystallogr. F Struct. Biol. Commun. 71, 86-95.