References
- Arakawa, T. and Timasheff, S.N. 1982. Stabilization of protein structure by sugars. Biochemistry 21, 6536-6544. https://doi.org/10.1021/bi00268a033
- Bakermans, C., Ayala-del-rio, H.L., Ponder, M.A., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M.F., and Tiedje, J.M. 2006. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int. J. Syst. Evol. Microbiol. 56, 1285-1291. https://doi.org/10.1099/ijs.0.64043-0
- Bell, P.J., Sunna, A., Gibbs, M.D., Curach, N.C., Nevalainen, H., and Bergquist, P.L. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148, 2283-2291. https://doi.org/10.1099/00221287-148-8-2283
- Cardenas, F., de Castro, M.S., Sanchez-Montero, J.M., Sinisterra, J.V., Valmaseda, M., Elson, S.W., and Alvarez, E. 2001. Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme Microb. Technol. 28, 145-154. https://doi.org/10.1016/S0141-0229(00)00278-7
- Chen, R.P., Guo, L.Z., and Dang, H.Y. 2011. Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J. Microbiol. Biotechnol. 27, 431-441. https://doi.org/10.1007/s11274-010-0475-7
- Feller, G. 2013. Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013, 512840.
- Finnegan, P.M., Brumbley, S.M., O'Shea, M.G., Nevalainen, H., and Bergquist, P.L. 2005. Diverse dextranase genes from Paenibacillus species. Arch. Microbiol. 183, 140-147. https://doi.org/10.1007/s00203-004-0756-3
- Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.P., Claverie, P., Collins, T., D'Amico, S., Dumont, J., Garsoux, G., Georlette, D., et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
- Hartl, F.U., Bracher, A., and Hayer-Hartl, M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332. https://doi.org/10.1038/nature10317
- Hottiger, T., De Virgilio, C., Hall, M.N., Boller, T., and Wiemken, A. 1994. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 219, 187-193. https://doi.org/10.1111/j.1432-1033.1994.tb19929.x
- Jaeger, K.E., Dijkstra, B.W., and Reetz, M.T. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
- Jaeger, K.E., Ransac, S., Dijkstra, B.W., Colson, C., Vanheuvel, M., and Misset, O. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
- Joseph, B., Ramteke, P.W., and Thomas, G. 2008. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv. 26, 457-470. https://doi.org/10.1016/j.biotechadv.2008.05.003
- Kim, S., Wi, A.R., Park, H.J., Kim, D., Kim, H.W., Yim, J.H., and Han, S.J. 2015. Enhancing extracellular lipolytic enzyme production in an arctic bacterium, Psychrobacter sp. ArcL13, by using statistical optimization and fed-batch fermentation. Prep. Biochem. Biotechnol. 45, 348-364. https://doi.org/10.1080/10826068.2014.940964
-
Kulakova, L., Galkin, A., Nakayama, T., Nishino, T., and Esaki, N. 2004. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly
${\rightarrow}$ Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta. 1696, 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008 - Lee, J.C. and Timasheff, S.N. 1981. The stabilization of proteins by sucrose. J. Biol. Chem. 256, 7193-7201.
-
Novototskaya-Vlasova, K., Petrovskaya, L., Kryukova, E., Rivkina, E., Dolgikh, D., and Kirpichnikov, M. 2013a. Expression and chaperone-assisted refolding of a new cold-active lipase from Psychrobacter cryohalolentis
$K5^T$ . Protein Expr. Purif. 91, 96-103. https://doi.org/10.1016/j.pep.2013.07.011 -
Novototskaya-Vlasova, K.A., Petrovskaya, L.E., Rivkina, E.M., Dolgikh, D.A., and Kirpichnikov, M.P. 2013b. Characterization of a cold-active lipase from Psychrobacter cryohalolentis
$K5^T$ and its deletion mutants. Biochemistry (Mosc) 78, 385-394. https://doi.org/10.1134/S000629791304007X - Novototskaya-Vlasova, K., Petrovskaya, L., Yakimov, S., and Gilichinsky, D. 2012. Cloning, purification, and characterization of a cold-adapted esterase produced by Psychrobacter cryohalolentis K5T from Siberian cryopeg. FEMS Microbiol. Ecol. 82, 367-375. https://doi.org/10.1111/j.1574-6941.2012.01385.x
- Park, I.H., Kim, S.H., Lee, Y.S., Lee, S.C., Zhou, Y., Kim, C.M., Ahn, S.C., and Choi, Y.L. 2009. Gene cloning, purification, and characterization of a cold-adapted lipase produced by Acinetobacter baumannii BD5. J. Microbiol. Biotechnol. 19, 128-135. https://doi.org/10.4014/jmb.0802.130
- Salameh, M.A. and Wiegel, J. 2007. Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl. Environ. Microbiol. 73, 7725-7731. https://doi.org/10.1128/AEM.01509-07
- Sarkar, P., Yamasaki, S., Basak, S., Bera, A., and Bag, P.K. 2012. Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem. 47, 858-866. https://doi.org/10.1016/j.procbio.2012.02.023
- Shandilya, H., Griffiths, K., Flynn, E.K., Astatke, M., Shih, P.J., Lee, J.E., Gerard, G.F., Gibbs, M.D., and Bergquist, P.L. 2004. Thermophilic bacterial DNA polymerases with reverse-transcriptase activity. Extremophiles 8, 243-251. https://doi.org/10.1007/s00792-004-0384-5
- Singer, M.A. and Lindquist, S. 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639-648. https://doi.org/10.1016/S1097-2765(00)80064-7
- Smalas, A.O., Leiros, H.K., Os, V., and Willassen, N.P. 2000. Cold adapted enzymes. Biotechnol. Annu. Rev. 6, 1-57. https://doi.org/10.1016/S1387-2656(00)06018-X
- Sunna, A. and Bergquist, P.L. 2003. A gene encoding a novel extremely thermostable 1,4-beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7, 63-70.
- Suzuki, T., Nakayama, T., Kurihara, T., Nishino, T., and Esaki, N. 2002. Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain no. 6. isolated from Siberian soil. Biosci. Biotechnol. Biochem. 66, 1682-1690. https://doi.org/10.1271/bbb.66.1682
- Vallejo, L.F. and Rinas, U. 2004. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb. Cell Fact. 3, 11. https://doi.org/10.1186/1475-2859-3-11
- Zhang, A.J., Gao, R.J., Diao, N.B., Xie, G.Q., Gao, G., and Cao, S.G. 2009. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. J. Mol. Catal. B Enzym. 56, 78-84. https://doi.org/10.1016/j.molcatb.2008.06.021
- Zhang, J., Lin, S., and Zeng, R.Y. 2007. Cloning, expression, and characterization of a cold-adapted lipase gene from an Antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17, 604-610.
- Zhao, J.C., Zhao, Z.D., Wang, W., and Gao, X.M. 2005. Prokaryotic expression, refolding, and purification of fragment 450-650 of the spike protein of SARS-coronavirus. Protein Expr. Purif. 39, 169-174. https://doi.org/10.1016/j.pep.2004.10.004