DOI QR코드

DOI QR Code

Train Speed Control in Slope Area Using Infrared System

적외선 시스템을 이용한 경사 지역에서 열차 운행 속도 제어

  • Received : 2016.05.30
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

Train speed control is a vital part of train protection to build safe movement at an operation track. There is a special condition of track that needs more attention to protect the train, for example in slope area. Moreover, in developing country with vandalism problem, it requires to install minimalized equipment on the trackside. In addition, in tropical country, on tracksides it will be potentially pooling water that influences to the performance of trackside equipment. To address these problems, we propose the train speed control for slope area using infrared system. By installing on the pole configuration, the system offers a less challenging, economically sensible, minimalized installation of equipment on the trackside and reliability for heavy rain environment. This paper concentrates on the controlling train speed and measurement performance evaluation in slope area. The proposed train speed control system can monitor and control the speed in sloping area with maximum 3.6% and controlled speed about 20 km per h.

열차 속도 제어는 운영 트랙에서 안전 운동을 구축하기 위한 열차 보호의 중요한 일부분이다. 경사진 면적과 같은 열차를 보호하는 데 필요한 트랙의 특수한 조건이 있다. 더욱이 반달리즘 문제를 가진 개도국에서 특수한 조건은 트랙 사이드의 장비를 최소화하기 위한 설치가 요구된다. 더욱이 열대 국가에서 트랙 사이드는 수질에서 트랙 사이드 장비의 성능에 영향을 줄 것으로 보인다. 이러한 문제를 해결하기 위하여 적외선 시스템을 이용하여 경사진 면적에 대하여 열차 속도 제어를 제안한다. 전주 배열의 설치에 의해 이 시스템은 보다 적은 도전, 경제적인 민감성, 트랙 사이드의 장비의 최소 설치와 강우 환경에서 신뢰성을 제공한다. 본 논문은 경사진 면적에서 성능 평가를 측정하고 열차 속도를 제어하는데 중점을 준다. 제안한 열차 속도 제어 시스템은 시간 당 약 20km의 제어속도와 최대 3.6%의 경사진 면적에서 속도 제어와 감시가 가능하다.

Keywords

References

  1. J. Pachl, Railway operation and control. 2nd Edition, Mountlake Terrace Washington: VTD Rail Publishing, 2009.
  2. K. Yoshimoto, K. Kataoka, and K. Komaya, "A Feasibility Study of Train Automatic Stop Control Using Range Sensors," Intelligent Transportation Systems Conf. Proceeding, Oakland, USA, August 25-19, 2001, pp. 802-807.
  3. P. D. Booth, "Intermittent and Continuous Automatic Train Protection", Railway Signalling and Control Systems (RSCS), IET Professional Development Course, London UK, May 21, 2012, pp. 89-117.
  4. G. Theeg and S. Vlasenko, Train Protection on Railway Signalling & Interlocking. 1st Edition, Hamburg: Eurail Press, 2009.
  5. F. Flammini, "Automatic Train Protection Systems," Industrial Engineering Management, vol. 2, issue 5, 2013, pp. 1-3
  6. J. Catrain, Automatic train protection and control on european railway signaling, 1st Edition, London: A & C Black, 1995.
  7. A. W. Evans, "The economics of Automatic Train Protection in Britain," Transport Policy, vol. 3, no. 3, 1996, pp. 105-110. https://doi.org/10.1016/0967-070X(96)00015-7
  8. S. Badugu and A. Movva, "Positive Train Control", Int. J. of Engineering and Advanced Engineering, vol. 3, issue 4, 2013, pp. 304-307.
  9. M. Malvezzi, B. Allotta, and M. Rimchi, "Odometric estimation for automatic train protection and control systems," Vehicle System Dynamics, vol. 49, no. 5, 2011, pp. 723-739. https://doi.org/10.1080/00423111003721291
  10. B. Allotta, L. Pulgi, A. Ridolfi, M. Malvezzi, G. Vettori, and A. Rindi, "Evaluation of odometry algorithm performances using a railway vehicle dynamic model," Vehicle System Dynamics, vol. 50, no. 5, 2012, pp. 699-724. https://doi.org/10.1080/00423114.2011.628681
  11. K. Katsuta, "Cost effective railway signaling by wireless communication among onboard controllers and switch controllers," IET Intelligent Transport Systems, vol. 9, issue 1, 2015, pp. 67-74. https://doi.org/10.1049/iet-its.2013.0169
  12. M. Lauer and D. Stein, "A Train Localization Algorithm for Train Protection Systems of the Future," Intelligent Transportation System, vol. 16, issue 12, 2014, pp. 970-979.
  13. H. Shagir, M. Heddebaut, F. Elbahhar, J. M. Rouvaen, A. M. Rivenq, and J. P. Ghys, "Train-to-wayside wireless communication in tunnel using ultra-wide-band and time reversal," Transportation Research Part C, vol. 17 issue 1, February 2009, pp. 81-97. https://doi.org/10.1016/j.trc.2008.09.003
  14. J. J. Garcia, C. Losada, F. Espinosa, J. Urena, A. Hernandez, M. Mazo, C. De Marziani, A. Jimenez, and E. Bueno, "Dedicated smart IR barrier for obstacle detection in railways," Industrial Electronics Society, 31st Annual Conference of IEEE Industrial Electronics Society, IECON, Nort Carolina, November 6-10, 2005, pp.439-444.
  15. Operational Regulation Team of Indonesian Railway Company, Operational regulation 3 in Indonesia, 2010.
  16. Indonesian Railway Company, Graph of Train Traffic in Indonesia, 2015.
  17. S. Williams, "IrDA: Past, Present and Future," IEEE Personal Communications, vol. 7 no.1, 2000, pp. 11-19. https://doi.org/10.1109/98.824566
  18. V. Vitsas, O. Barker, and A. C. Boucouvalas, "IrDA infrared wireless communications: protocol throughput optimization," IEEE Wireless Communications, vol. 10 issue 2, 2003, pp. 22-29.