DOI QR코드

DOI QR Code

소프트콘택트렌즈 재질과 착색에 따른 눈물성분 침착과 포도상구균 흡착의 상관관계

Relationship between the Deposition of Tear Constituents on Soft Contact Lenses according to Material and Pigmentation and Adherence of Staphylococcus aureus

  • 박소현 (서울과학기술대학교, 안경광학과) ;
  • 박일석 (서울과학기술대학교, 안경광학과) ;
  • 김소라 (서울과학기술대학교, 안경광학과) ;
  • 박미정 (서울과학기술대학교, 안경광학과)
  • Park, So Hyun (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Ill-suk (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science and Technology)
  • 투고 : 2016.05.09
  • 심사 : 2016.06.09
  • 발행 : 2016.06.30

초록

목적: 본 연구에서는 소프트콘택트렌즈의 재질 특성과 착색 여부가 눈물 성분이 침착된 소프트콘택트렌즈의 포도상구균 흡착에 미치는 영향을 알아보았다. 방법: Etafilcon A, hilafilcon B, nelfilcon A 재질의 투명 소프트콘택트렌즈(이하 투명렌즈)와 써클 소프트콘택트렌즈(이하 써클렌즈)를 대상으로 하여 인공눈물에 침착시키기 전과 후의 흡착 균 수를 측정하였다. 또한, 전기영동법을 통해 인공눈물의 침착 경과시간에 따른 눈물단백질의 변성 정도를 측정하였다. 결과: 포도상구균의 흡착은 콘택트렌즈 재질에 따라 통계적으로 유의하게 차이가 있었다. 투명렌즈와 써클렌즈의 균 흡착 양상에 차이가 있어 etafilcon A 재질에서는 써클렌즈의 균 흡착량이 다소 많았지만, hilafilcon B 및 nelfilcon A 재질에서는 써클렌즈에 흡착된 균수가 각각 투명렌즈의 89.3%, 71.3%였다. 눈물단백질이 침착되었을 경우 흡착된 균의 수가 감소하였으며 감소 정도는 재질에 따라 차이가 있어 etafilcon A 재질 투명소프트콘택트렌즈에서 가장 감소 정도가 컸다. 이러한 눈물단백질의 항균효과는 눈물단백질이 소프트콘택트렌즈에 침착된 시간이 경과될수록 감소하였으며 침착된 라이소자임의 양 역시 감소하였다. 또한, 항균효과의 감소 및 라이소자임 양의 감소가 콘택트렌즈 재질 특성 및 착색여부에 따라 달라졌다. 결론: 본 연구를 통하여 소프트콘택트렌즈의 재질 및 착색여부에 의해 포도상구균의 흡착량이 달라지며, 착색여부보다 렌즈의 재질 특성이 균의 흡착에 많은 영향을 주는 것을 밝혔다. 또한 소프트콘택트렌즈에 침착된 항균단백질의 변성 정도가 렌즈 재질 및 착색여부에 따라 달라지며 이러한 결과가 균의 흡착량에 영향을 미친다는 것을 확인하였다.

Purpose: The study was aimed to figure out the effect of materials and pigmentation of soft contact lens on the adherence of Staphylococcus aureus upon soft contact lenses deposited with tear components. Methods: The number of adherent S. aureus on clear and circle soft contact lenses made of etafilcon A, hilafilcon B, nelfilcon A was measured before and after incubation in artificial tear. Furthermore, the denaturalization level of tear protein with time after incubation in artificial tear was estimated by electrophoresis. Results: The adherence of S. aureus was significantly different according to the lens materials. The pattern of bacterial adherence on clear and circle contact lenses was different. That is, the adherent amount of S. aureus was somewhat larger on circle lens made of etafilcon A however, amount on circle lenses made of hilafilcon B and nelfilcon A was 89.3% and 71.3% of the number on clear lenses. When the tear protein was deposited on contact lenses, the number of adherent bacteria decreased and its degree was varied according to the lens material. The degree of decrease was the biggest in clear soft lens made of etafilcon A. Anti-bacterial effect of tear protein decreased with time after deposition of tear protein on soft contact lens and the amount of lysozyme also decreased. The reduction of anti-bacterial effect and quantity of lysozyme was different according to contact lens materials and pigmentation. Conclusions: It was revealed that the adherence of S. aureus depends on contact lens materials and pigmentation, and the specification of lens material affects more on adherence of S.aureus than pigmentation. It was further figured out the denaturalization level of anti-bacterial protein on soft contact lens varies according to lens materials and pigmentation, which produces an effect on the quantity of bacterial adherence.

키워드

참고문헌

  1. Korean Optometric Association. Contact lens market conditions in the first half of 2015, 2015. http://www.optic.or.kr/Cate_03/eOpticnews.asp?nmode=view&OnsSeq=2686&search_type=4(2 December 2015).
  2. Ruben M, Guillon M. Contact lens practice, 1st Ed. London: Chapman & Hall, 1994:667-720.
  3. Kim JH, Song JS, Hyon JY, Chung SK, Kim TJ. A survey of contact lens-related complications in Korea: the Korean contact lens study society. J Korean Ophthalmol Soc. 2014;55(1):20-31. https://doi.org/10.3341/jkos.2014.55.1.20
  4. Choi HJ, Yum JH, Lee JH, Lee DH, Kim JH. Clinical features and compliance in patients with cosmetic contact lensrelated complications. J Korean Ophthalmol Soc. 2014;55(10): 1445-1451. https://doi.org/10.3341/jkos.2014.55.10.1445
  5. Boost M, Poon KC, Cho P. Contamination risk of reusing daily disposable contact lenses. Optom Vis Sci. 2011;88(12): 1409-1413. https://doi.org/10.1097/OPX.0b013e3182346616
  6. Ma KJ, Lee KJ. Contact lens, 1st Ed. Seoul: Daihakseolim, 1995:82-322.
  7. Singh S, Satani D, Patel A, Vhankade R. Colored cosmetic contact lenses: an unsafe trend in the younger generation. Cornea. 2012;31(7):777-779. https://doi.org/10.1097/ICO.0b013e31823cbe9c
  8. Michaud L, Giasson CJ. Overwear of contact lenses: increased severity of clinical signs as a function of protein adsorption. Optom Vis Sci. 2002;79(3):184-192. https://doi.org/10.1097/00006324-200203000-00013
  9. Lee DK, Choi SK, Song KY. Clinical survey of corneal complications associated with contact lens wear. J Korean Opthalmol Soc. 1994;35(8):895-901.
  10. Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea. 2008;27(1):22-27. https://doi.org/10.1097/ICO.0b013e318156caf2
  11. Yoder JS, Verani J, Heidman N, Hoppe-Bauer J, Alfonso EC, Miller D et al. Acanthamoeba keratitis: the persistence of cases following a multistate outbreak. Ophthalmic Epidemiol. 2012;19(4):221-225. https://doi.org/10.3109/09286586.2012.681336
  12. Tuli SS, Iyer SA, Driebe WT Jr. Fungal keratitis and contact lenses: an old enemy unrecognized or a new nemesis on the block?. Eye Contact Lens. 2007;33(6 Pt 2):415-417. https://doi.org/10.1097/ICL.0b013e318157e999
  13. Ladage PM, Jester JV, Petroll WM, Bergmanson JP, Cavanagh HD. Role of oxygen in corneal epithelial homeostasis during extended contact lens wear. Eye Contact Lens. 2003;29(1):S2-S6. https://doi.org/10.1097/00140068-200301000-00002
  14. Park M, Kwon MJ, Hyun SH, Kim DS. The adsorption pattern of protein to the soft contact lens and its effect on the visible light transmission and the contact angle. J Korean Ophthalmic Opt Soc. 2004;9(1):53-68.
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.
  16. Kodjikian L, Casoli-Bergeron E, Malet F, Janin-Manificat H, Freney J, Burillon C et al. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefes Arch Clin Exp Ophthalmol. 2008; 246(2):267-273. https://doi.org/10.1007/s00417-007-0703-5
  17. Fleiszig SM, Evans DJ, Mowrey-McKee MF, Payor R, Zaidi TS, Vallas V et al. Factors affecting Staphylococcus epidermidis adhesion to contact lenses. Optom Vis Sci. 1996;73(9):590-594. https://doi.org/10.1097/00006324-199609000-00005
  18. OnurdaFK, Ozkan S, Ozgen S, OlmuH, Abbasolu U. Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses. Graefes Arch Clin Exp Ophthalmol. 2011;249(4):559-564. https://doi.org/10.1007/s00417-010-1595-3
  19. Bruinsma GM, van der Mei HC, Busscher HJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001;22(24):3217-3224. https://doi.org/10.1016/S0142-9612(01)00159-4
  20. Giraldez MJ, Resua CG, Lira M, Oliveira ME, Magarios B, Toranzo AE et al. Contact lens hydrophobicity and roughness effects on bacterial adhesion. Optom Vis Sci. 2010; 87(6):E426-E431.
  21. Chan KY, Cho P, Boost M. Microbial adherence to cosmetic contact lenses. Cont Lens Anterior Eye. 2014;37(4):267-272. https://doi.org/10.1016/j.clae.2013.12.002
  22. Suwala M, Glasier MA, Subbaraman LN, Jones L. Quantity and conformation of lysozyme deposited on conventional and silicone hydrogel contact lens materials using an in vitro model. Eye Contact Lens. 2007;33(3):138-143. https://doi.org/10.1097/01.icl.0000244155.87409.f6
  23. Sariri R, Tighe B. Effect of surface chemistry on protein interaction with hydrogel contact lenses. Iran Polym J. 1996;5(4):259-266.
  24. Norde W. Adsorption of proteins from solution at the solid-liquid interface. Adv Colloid Interface Sci. 1986;25(4): 267-340. https://doi.org/10.1016/0001-8686(86)80012-4
  25. Subbaraman LN, Borazjani R, Zhu H, Zhao Z, Jones L, Willcox MD. Influence of protein deposition on bacterial adhesion to contact lenses. Optom Vis Sci. 2011;88(8): 959-966. https://doi.org/10.1097/OPX.0b013e31821ffccb

피인용 문헌

  1. Relationship between the Deposition of Tear Constituents and the Adherence of Candida albicans according to Soft Contact Lens Materials and Pigmentation vol.21, pp.3, 2016, https://doi.org/10.14479/jkoos.2016.21.3.215
  2. Changes in Subjective/Objective Symptoms and Lens Parameters by the Education for Cosmetic Contact Lens Care vol.21, pp.4, 2016, https://doi.org/10.14479/jkoos.2016.21.4.361
  3. The Stability and Safety Evaluations of Soft Contact Lenses past their Expiry Date vol.22, pp.1, 2017, https://doi.org/10.14479/jkoos.2017.22.1.33
  4. Correlation between Tear Proteins Deposition and Oxygen Transmissibility of Soft Contact Lenses vol.22, pp.2, 2017, https://doi.org/10.14479/jkoos.2017.22.2.97
  5. Biofilm Formation and its Related Gene Expression in Staphylococcus aureus on Different Materials of Soft Contact Lenses vol.22, pp.3, 2017, https://doi.org/10.14479/jkoos.2017.22.3.205
  6. Correlation between Tear Volume and Tear Film Stability and Protein Amount Deposited on Soft Contact Lenses in Dry Eyes vol.24, pp.1, 2019, https://doi.org/10.14479/jkoos.2019.24.1.11
  7. Correlation between Protein Deposition and Oxygen Transmissibility in Circle Contact Lenses vol.24, pp.1, 2016, https://doi.org/10.14479/jkoos.2019.24.1.21
  8. Changes in the Surface and Parameters of Circle Contact Lenses Exposed to Various Temperatures during Distribution vol.24, pp.1, 2016, https://doi.org/10.14479/jkoos.2019.24.1.29
  9. Personalized recommendation application for colored contact lens vol.20, pp.9, 2016, https://doi.org/10.9728/dcs.2019.20.9.1717
  10. Changes in the Parameters of Soft Contact Lenses by Exposure to Different Solutions in Daily Life vol.25, pp.2, 2016, https://doi.org/10.14479/jkoos.2020.25.2.119
  11. Manufacturing of Contact Lenses Containing a Natural Antibacterial Component and Characteristics of its Release vol.26, pp.3, 2016, https://doi.org/10.14479/jkoos.2021.26.3.191