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INITIAL SOFT L-FUZZY PREPROXIMITIES

YOUNG SUN KiM? AND YONG CHAN KimP*

ABSTRACT. In this paper, we introduce the notions of soft L-fuzzy preproximities
in complete residuated lattices. We prove the existence of initial soft L-fuzzy pre-
proximities. From this fact, we define subspaces and product spaces for soft L-fuzzy
preproximity spaces. Moreover, we give their examples.

1. INTRODUCTION

Héjek [5] introduced a complete residuated lattice which is an algebraic structure
for many valued logic. It is an important mathematical tool for algebraic structures
[6,7-9]. Recently, Molodtsov [11] introduced the soft set as a mathematical tool
for dealing information as the uncertainty of data in engineering, physics, computer
sciences and many other diverse field. Presently, the soft set theory is making
progress rapidly [1,4]. Pawlak’s rough set [12,13] can be viewed as a special case of
soft rough sets [4]. The topological structures of soft sets have been developed by
many researchers [2, 7-9, 15-17].

Cimoka et.al [3] introduced L-fuzzy syntopogenous structures as fundamentals
and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities
in a complete residuated lattice. Kim [7] introduced a fuzzy soft F': A — LY as an
extension as the soft F': A — P(U) where L is a complete residuated lattice. Kim
[7-9] introduced the soft topological structures, soft L-fuzzy quasi-uniformities and
soft L-fuzzy topogenous orders in complete residuated lattices.

In this paper, we prove the existence of initial soft L-fuzzy preproximities. From
this fact, we define subspaces and product spaces for soft L-fuzzy preproximity

spaces. Moreover, we give their examples.
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2. PRELIMINARIES

Definition 2.1 ([5,6]). An algebra (L,A,V,®,—,0,1) is called a complete residu-
ated lattice if it satisfies the following conditions:

(C1) L =(L,<,V,A,1,0) is a complete lattice with the greatest element 1 and
the least element 0;

(C2) (L,®,1) is a commutative monoid;

(Crzoy<zifz<y—zforz,yzel.

In this paper, we assume that (L, <,®,—,®,*) is a complete residuated lattice
with an order reversing involution * which is defined by = @y = (2* ® y*)* and

¥ =z — 0.

Lemma 2.2 ([5,6]). For each x,y,z,z;,y;,w € L, we have the following properties.
(HDl—=ax=2,00z=0,

Ify <z thenzoy <z@z, 2@y <zxd®z,z—>y<zx—zandz—zx <y — x,

rOy<lzNANy<zVy<zdy,

Niya)* = Vv, Viwi)* =N\ i

O (V;5i) = V(@ ©y),

@ (N\;yi) = Ni(@ ® wi),

= (N\;yi) = Ni(x = vi),

(

z— (V;vi) = Vi(x — wi),
(Aizi) >y = V(@i — ),
(

rOyY) —z=r—(Yy—2)=y—(z—2),

)
)
)
) (@—=y)o(z—-w) < (z02) > (Yow),
1) (z—y)o(z—-w) <(zd2) = (YO w),
Jr—=y<(z02) = (yoz)and (z - y)O(y —2) <z — 2,
)zOYO (z0w) < (rO2)®(yOw).
) x

—y=y" —a"

Definition 2.3 ([7-9]). Let X be an initial universe of objects and E the set of
parameters (attributes) in X. A pair (F, A) is called a fuzzy soft set over X, where
AC Eand F: A— L% is a mapping. We denote S(X, A) as the family of all fuzzy

soft sets under the parameter A.
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Definition 2.4 ([7-9]). Let (F, A) and (G, A) be two fuzzy soft sets over a common
universe X.

(1) (F,A) is a fuzzy soft subset of (G, A), denoted by (F, A) < (G, A) if F(e) <
G(e), for each € € A.

(2) (F,A)N(G,A) =(FANG,A) if (FAG)(e) = F(e) A G(e) for each € € A.

(3) (F,A)V (G,A) = (FVG,A) if (FV G)(e) = F(e) V G(e) for each € € A.

(4) (F,A)® (G,A) = (F©G,A) if (F® G)(e) = F(e) ® G(e) for each € € A.
(5) (F,A)* = (F*,A)if F*(e) = (F(e))* for each € € A.

(6) (F,A) & (G,A) =(FeGA)if (F&G)(e) = (F*(e) ©G*(¢))* for each € € A.

Definition 2.5 ([8,9]). Let S(X,A) and S(Y, B) be the families of all fuzzy soft
sets over X and Y, respectively. The mapping fs : S(X,A) — S(Y,B) is a soft
mapping where f: X — Y and ¢ : A — B are mappings.

(1) The image of (F, A) € S(X, A) under the mapping fy4 is denoted by fy((F, A))
= (f$(F), B) where

fo(F)()(y) =
Vaes—1y) (fo(F(@)(y), if 7' ({D}) # 0,
0, otherwise.

(2) The inverse image of (G, B) € S(Y, B) under the mapping f, is denoted by
f31(G,B)) = (f,(G), A) where

f31(G)(a)(x) = f;1(G(d(a)))(x), Ya € A,z € X.
(3) The soft mapping fy : S(X, A) — S(Y, B) is called injective (resp. surjective,

bijective) if f and ¢ are both injective (resp. surjective, bijective).

Lemma 2.6 ([8,9]). Let fy : S(X,A) — S(Y,B) be a soft mapping. Then we
have the following properties. For (F,A),(F;,A) € S(X,A) and (G,B),(G;,B) €
S, B),
(1) (©.5) 2 (1"
2) (F, A) < (fs

((G, B))) with equality if f is surjective,
(2) ((F, A))) with equality if f is injective,

(3) £ '(Vie1(Gi, B)) = Vies 51 ((Gi, B)),

(4) I(AieI(Gi>B)) /\zeI f¢> ((GivB))z

(5) f¢(\/1€1(Fz‘=A)) = Vier fo((Fi, A)),

(6) fo(Nier(Fis A)) < Niep Jo((Fi, A)) with equality if f is injective,
(7) £, '((G1,B) © (Go, B)) = f,'((G1,B)) © f, (G2, B)),

(8) f,

8) f31((G1,B) ® (G2, B)) = f;'((G1,B)) @ f; (G2, B)),
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(9) fo((F1,A)O(F2, A)) < fs((F1,A))O fo((Fa, A)) with equality if f is injective.
(10) fo((F1, A) @ (F2, A)) < fo((F1, A)) @ fy((F2, A)).

Definition 2.7. A function 6 : LX x LX — L is called a soft L-fuzzy pre-prozimity
on X if it satisfies the following conditions:
(SP1) 6((1x,A),(0x,A)) =0 and §((0x,A),(1x,A)) = 0.
(SP2) If (F, A) < (F1,A) and (G, A) < (G1,A), then
5((F, A), (G, A)) < 8((Fi, A), (G1, A)).
(SP3) If 6((F, A), (G, A)) # 1, then (F, A) < (G, A)*.
(SP4)

5((F17A) © (FQvA)v (HlvA) ©® (HQvA)) < 5((F1’A)’ (HlvA)) ©® 5((F27A)7 (H27A))

The triple (X, A, d) is said to be a soft L-fuzzy pre-prozimity space.
A soft L-fuzzy pre-proximity space is called a soft L-fuzzy quasi-prozimity if (SQ)

5((Fa A)a (G>A)) > /\(H,A)ES(XA){(S((F’ A)v (H7 A)) ® 5((Ha A)*> (Ga A))}

A soft L-fuzzy pre-proximity space is called perfect if

(P) 6(Vier (Fiy A), (Gy A)) < Viey 6((F, A), (G, A).

Let (X, A,d1) and (X, A, d2) be soft L-fuzzy pre-proximity spaces. We say that
01 is finer than dy (02 is coarser than d1) if 51 ((F, A), (G, A)) < 62((F, A), (G, A)) for
all (F,A),(G,A) e S(X,A).

Let (X, A,0x) and (Y, B, dy) be soft L-fuzzy pre-proximity spaces and fy : X —
Y be a soft map. Then f is called a fuzzy proximity soft map if V(F, A), (G, A) €
S(X, A), 3x(F, A), (G, 4)) < x (fo((F, A)), (£4((G, 4))).

Remark 2.8. (1) If a complete residuated lattice (L,<,®,®,*) is a completely
distributive lattice (L, <, A, V,*) with a strong negation * with ® = A and ® =V,
the above definition coincide with that in the sense [3].

(2) Let (X, A, ) be a soft L-fuzzy pre-proximity space. By (SP4), we have

(O (Fi, A), @, (Gr, A)) < N\ (B1_16((F, A), (G, A)))
ceK
where K = {o |0 :{1,2,...,p} — {1,2,...,p} is a bijective function}.

(3) Let L be an idempotent complete residuated lattice, that is, z ® z = z, for
each x € L. Since (F,A) ® (F,A) = (F,A) and (G,A) & (G,A) = (G, A), then
5((F, 4), (G1, A) & (Ga, A) < 6((F, A), (G1, A)) & 5((F, A), (Ga, 4)) and 6((F1, A) ©
(F2,A), (G, A)) <6((F1, A), (G, A)) ® 6((F2, A), (G, A)).
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3. INITIAL SOFT L-FUZZY PREPROXIMITIES

Theorem 3.1. Let {(X;, A;,0;) | i € T'} be a family of soft L-fuzzy pre-prozimity
spaces. Let X be a set and, for each i € I, f; : X — X; and ¢; : A — A; mappings.
Define the function § : S(X,A) x S(X,A) — L on X by

§((F, A), (G, A))

= A Aoer { &t ( Nuer 800, (B3 ) (o, (Gt AN }

where the first )\ is taken over all two finite families {(Fj, A) | (F, A) = @%_,(F}, A)},
{(Gk, A) | (G, A) = &_1(Go5), A)} and

K={ol|o:{1,..,p} = {1,....,p} is a bijective function}.

Then:

(1) 6 is the coarsest soft L-fuzzy pre-proximity on X which all (f;)g,,i € T', are
fuzzy proximity soft maps.

(2) If {(X;, Ai, 6;) |t € T} is a family of soft L-fuzzy quasi-proximity spaces, § is
a soft L-fuzzy quasi-proximity on X.

(3) A map fy : (Y,B,00) — (X,A,9) is a fuzzy proximity soft map iff each
(fi)g; © fs : (Y, B,d0) — (Xi, As, 0;) is a fuzzy proximity soft map.

Proof. (1) First, we will show that ¢ is a soft L-fuzzy pre-proximity on X.

(SP1) Since 6((F, A), (0x,A)) < 6((fi)g; ((F, A)),(0x,,A;)) = 0 for all (F,A) €
S(X,A), it is clear.

(SP2) Tt follows from the definition of 4.

(SP3) We will show that if (F, A) £ (G, A)* , then §((F, A), (G, A)) = 1.

Let (F,A) £ (G,A)*. Then, for every two finite families {(F}, A) | (F,A) =
L (Fj, A)} and {(Gy, A) | (G, A) = &}_, (G, A)} and o € K, there exist jo, o (jo),
xo such that (Fj,, A)(w0) £ (G(jo), A)(w0)*. It follows that, for all s € T,

(fi): ((Fjo, A))((fi)g; (%0)) Z (fi)g: (Go(jo)s A ((fi)g: (x0))"-
Since §; is a soft L-fuzzy pre-proximity on Xj,for each ¢ € T', by (SP3),
5i((fi)¢i((Fj0v A))v (fi)¢i((GU(j0)’ A))) =1L
So, /\z‘eF 8i((fi)g: ((Fj9, A)), (fl-)@((GU(jO), A))) = 1. By Lemma 2.2(3), it follows

1 (N 016, (3, A, (£, (G ) ) = 1,

el
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for every two finite families {(F}, A) | (F, A) = ( A)} and {(Gg, A) | (G, A) =
®h_1(G, A)} and o € K. Hence 6((F, A), (G, A))
(SP4) Suppose there exist (F;, A), (G, A) € S(X, A) such that

O((F1,A) © (F2, A),(G1,A) & (Ge, A))
£ 6((F1,A), (G1,4)) @ 6((F2, A), (G2, A)).

By the definition of §((F1, A), (G1, A)) and Lemma 2.2(6), there exist two finite fami-
lies {(F1,, A) | (F1, A) = 0f_ (F1;, A)} and {(G1,, ), A) | (G1, A) = B4 (G, ), A)}
with a bijective function o, we have
§((F1,A) ® (Fp, A), (G1,A) & (Ga, A))
2L 001 (Aier (o (P, A)), ()0, (G A))) ) | @ 6((F, 4), (G, A)
Again, by the definition of §((Fs, A), (G2, A)) and Lemma 2.2(6), there exist two
finite families {(Fy,,A) | (F2,A) = Of_;(Fy,, A)} and {(G2,,,A4) | (F2,A) =
i1 (G2, A)} with a bijective function ¢, we have
O((F1,A) ® (Fp, A), (G1,A) @ (G, A))
2 {00 (Nser 5i(for (B, ), (), (G ) |
o @l (Aier 0(()s (B ), (G o)
By Lemma 2.2(6), for each j,o(j) and k, e(k), there exist i;, i, € I' such that
5((F1, 4) © (Fy, A), (G1, A) & (Ga, A))
2L @8y (8,((fi)on, (B ), (i) )a, (G AD)) |
a{ &y (d((fi)s, <<F2k, ), )i (G D)}

On the other hand, since
(Fi, A) © (Fo, ) = (@1 (R, 4)) © (0, (Fy, 4))),

(G1, 4) & (Ga, A) = (80 Gy, A)) @ (@14 (Gaey A)).

for a bijective function o U ¢, we have

3((F1,4) © (Fz, A), (G1, A) @ (G, A))

< { @21 (0,((fi)o, (P ), (f))s, (G0 A))) |

o{ &y (9 ((fi)s, <<F2k, ), Fi))ou (Goe, ) }-
It is a contradiction. Hence the condition (SP4) holds.
Second, from the definition of 0, for two families {(F, A) | (F,A) = (F, A)} and

{(G,A) | (G,A) = (G, A)}, since

(5((F,A),(G,A)) </\z€1" (( z) ( (
0i((fi)e: (( 7A))( i)o: (G, 4))),
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for each i € ', (fi)g, : (X, A,0) — (X;, A;, ;) is a fuzzy proximity soft map.

If all (fi)g, : (X, A,d00) — (X, As,0;) are fuzzy proximity soft maps, then, for
all two finite families {(F}, A) | (F,A) = &L_,(Fj, A)} and {(Gy,A4) | (G,A) =
®p_1(Gg, A)} and 0 € K,

S, A), (G, A)) = Ay A (o, (B3 A, ()G, A}
= M&;_100((Fj, A), (Go), )}
> 60((F, A), (G, A)). (by Remark 2.8(2))
Thus, do((F, A), (G, A)) < ((F, A), (G, A)) for each (F, A), (G, A) € S(X, A).
(2) Let {(Xi,A:,6;) | i € I'} be a family of soft L-fuzzy quasi-proximity spaces.
We will show that § is an soft L-fuzzy quasi-proximity on X.
Suppose there exist (F, A), (G, A) € S(X, A) such that

S(F,A),(GA)) 2 N\ {5(FA),(H A)®s((H",A),(G,A))}.
(H,A)eS(X,A)

By the definition of d, there are finite families {(Fj, 4) | (F, A) = &%_,(Fj, A)} and
{(Gr,A) | (G, A) = &} _,(Gk, A)} and a bijective function o such that

1 { Nver 0:((13)6,((Fy, A)), (£)6: ((Gois A |
Z /\(H,A )ES(X,A) {5((F7 A)? (H7 A)) @ 6(( 7A)7 (G’A))}

It follows that for any j,o(j), there exists an i; € I" such that

B {01, (i), (B, A)), (Fiy o, (ot ) }

Z Nem,ayesx,0){0((F, A), (H, A)) @ 6((H*, A), (G, A))}.
Since §;; is a soft L-fuzzy quasi-proximity on X;,, by (SQ), there exists (H;;, 4;;) €
S(Xi,, Aq;) such that
(B)

@ﬁ-’zl{fsz’j((fij)mj((waA)) (Hy;, Aiy))) @ 6, (( Aiy), (fiy)e:, (G U(j)?A)))}

2 N, ayesx, 0){0((F, A), (H, A)) & 6((H", A), ( A))}
Aij)

On the other hand, put (H, A) = @?Zl(fij)@ ((Hy,, ). Since

(fis)ai, (fiy)g,, N((Hipy Ay))) < (Hiy, Ay,
for the identity o(j) = j, then
5((F, A), (H, A)) < @104, ((fi;)oi, (Fjs A)), (i), ((fiy) g, ((HZJ,A ))))

J

< 692:1 ij((fij)¢i]~((F]7A))’ (HZ]ﬂ Z]))
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Since (H, A)* = (fzj) ((HZ],A )*), for 0 € K, we have
6((H*7A)7(G7A)) S@gzl(sij((fzj)dh ((fzj)q_b (( ijs ))*>7(fz])¢z (( a(j)aA)))
< &7_10i,((Hij;, Aiy)", (f) L (Gogj)s A)))-
It implies
5((F A),(H, A)) ®0((H", A), (G, A))
104, ((Fiy o, (Fys A)), (i, Ai)® {08_ 61, (7, A4, (o, (Gt )}
= @jzl{ z]-<(fzj>¢>ij((FjaA)> (szvA ))@&j((H;;’Aij)’(fij)¢ij((GU(j)’A))>}'

It is a contradiction for (B). Thus, the result follows.
(3) Necessity of the composition condition is clear since the composition of fuzzy

proximity soft maps is a fuzzy proximity soft map.
Each two finite families {(F}, A) | fo((F,A)) = @?Zl(Fj,A)} and {(Gp,A) |
fo((G,A)) = &% _,(Gk, A)} and each o € K, we have

5(F5((F, A)), £5((G, A))
= A @81 (Aier 8o (B3, A), (), (G ) -

It follows
(F,A) < 1 (F((F,A)) = O, £, 1 ((Fy, A)) and (G, A) < &1y £, (G, A))-

Since (fi)g, o fs is a fuzzy proximity soft map and for any j,o(j),

(fi)g (fo(£5 (F, A))) < (fi)g, ((Fj, A)),

So(f5 H(F, A)), £ (Goggys A)) < 6il(fi)os (F, A)), (fi)os ((Go(), A)))-
Since (F, A) < &f_ 1f¢ ((F;,A)), we have, for all j,o(j) and i € T,

80((F, A), (G, 4)) < Ager { 8y 0005 (B3, 4)), £ (Gt A)) |
(by Remark 2.8(2))

< Averc { Bt Auer 8:((1)6,((Fi, A)), (£, (Gt ) }
Hence do((F, A), (G, A)) < 5(f¢((F7 A))7f¢>((G7 A))). O

From Remark 2.8(3) and Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let (L,®,<) be an idempotent complete residuated lattice. Let
{(X;,Ai,0;) | i € T} be a family of soft L-fuzzy pre-proximity spaces. Let X be a
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set and, for each i € T, f; : X — X; a mapping. Define the function § : S(X, A) x
S(X,A) — L on X by
5((F, ), (G, 4) = A { @y (N 6o (F5, A), (16 (G D) ) |,
el
where the first J\ is taken over all two finite families {(Fy, A) | (F, A) = &F_,(Fj, A)}
and {(Gi, A) | (G,A) = ®}_,(Gr,A)}. Then 6 is the coarsest soft L-fuzzy pre-

prozimity on X which for each i € I', (fi)g, is a fuzzy proximity soft map.

Let SPROX be a category with object (X, A,dx) where dx is a soft L-fuzzy
preproximity with a morphism fy : (X, A,0x) — (Y, B, dy) is a fuzzy proximity soft
map. Let SET be a category with object (X, f) where X is a set with a morphism
f:X —Y is a function.

Theorem 3.3. The forgetful functor U : SPROX — Set defined by U(X, A,§) = X
and U(f) = [ is topological.

Proof. From Theorem 3.1, every U-structured source (f; : X — U(X;, A;,0;))ier
has a unique U-initial lift (f; : (X, A,d) — (X;, d;))ier where ¢ in Theorem 3.1. [

Corollary 3.4. Let (Y, B,dy) be a soft L-fuzzy pre-prozimity space. Let X be a set
f: X =Y and ¢ : A — B mappings. Define the functiond : S(X, A)xS(X,A) — L
on X by
8((F.A), (G A) = N{ A { &8t (v (Fal(Fr A), fol(Gogyo ) } 1
ceK
where the first )\ is taken over all two finite families {(Fj, A) | (F, A) = &%_,(Fj, A)},
{(Ga(j)aA) ‘ (Ga A) = (Ga(j )} and
A={o|o: {1, wpt = {1, ...,p} s a bijective function}.

Then ¢ is the coarsest soft L-fuzzy pre-prozimity on X which fy is a fuzzy prozimity
soft map such that

6((F,A),(G, 4)) = 5Y(f¢((F7 A)), f¢((G7 A))).
Proof. From Theorem 3.1 and the definition of §((F, A), (G, A)), we only show:

Suppose 6((F, A), (G, A)) 2 oy (fs((F,A)), fo((G, A))). Then there exist two finite
families {(F}, A) | (F,A) = &f_,(F;, A)}, {(Gog), A) | (G, A) = &)1 (Go(j), A)}
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and o € K such that

& (0 (o (Fy A), Fo(Gogrs ) ) 2 by (Fo((F, A)), £o((G A)).

On the other hand, since ©%_, f4((Fj, A)) > fo(@f_; (F}, A)) and &7_; f5((Goj), A)) >
f¢(€9§:1(GU(j),A)) from Lemma 2.6(9,10), we have

5 (B ol (B3 AN S (Gt AN)) 2 09 (1ol (Fro D, &1 Sl (Gt )
> by (o @y (Fj, A)), S @8 (Gt A)) = v (fo((F, A)), fo((G, A))).

It is a contradiction. Hence the result holds. O

Definition 3.5. Let (X, A,dx) be a soft L-fuzzy pre-proximity space , Z C X and
C C A. The pair (Z,C,0) is said to be a subspace of (X, A, dx) if it is endowed with
the initial soft L-fuzzy pre-proximity with respect to (Z,i,(X,dx)) where i is the
inclusion function. From Corollary 3.8, we define the function 6 : L? x L¥ — L on
A by

Definition 3.6. Let X = [[,.p X; be the product of the sets from family {(X;, 4;, ;)|
i € '} of soft L-fuzzy pre-proximity spaces. The initial soft L-fuzzy pre-proximity
0 = ®J; on X with respect to the family {m; : X — (X;,4;,9;) | i € '} of all
projection maps is called the product soft L-fuzzy pre-proximity of {d; | i € I'}, and
(X, T Lier Ai, ®6;) is called the product soft L-fuzzy pre-prozimity space.

Example 3.7. Let U = {h; | ¢ = {1,...,6}} with h;=house and E = {e,b,w,c,i}
with e=expensive,b= beautiful, w=wooden, c¢= creative, i=in the green surround-

ings. Define a binary operation ® on [0, 1] by

rOy=max{0,x+y—1}, r >y =min{l —z +y, 1}

r@y=min{l,z+y}, 2*=1—x

Then ([0, 1], A, —,0, 1) is a complete residuated lattice (ref. [5,6]). Let A = {b,c,i} C
E and X = {h', h* K5 RO}, Put (H, A) be a fuzzy soft set as follow:

(H,A) h' m* B> BS (H,A)o(H,A) h' h* h® S
b 05 06 02 06 b 00 02 0.0 0.2
¢c 01 05 05 06 c 0.0 0.0 0.0 0.2
i 04 06 0.6 05 i 0.0 02 0.2 0.0



INITIAL SOFT L-FUZZY PREPROXIMITIES 129

(H*,A) h' n* B> BS (H*, A) @ (H*,A) h' h* h® KS
b 05 04 08 04 1.0 0.8 1.0 0.8
c 09 05 05 04 1.0 1.0 1.0 0.8
i 06 04 04 05 1.0 0.8 08 1.0

<. O o

(K,A) ht m»* B> B (HA)®(K,A) h' n* B hS
b 06 05 04 0.6 b 0.1 0.1 0.0 0.2
c 07 04 06 0.6 c 0.0 00 0.1 02
i 05 03 03 0.7 i 0.0 0.0 0.0 0.2

(1) We define soft L-fuzzy preproximities d1,d2 : S(X, A) x S(X,A) — L as

07 lf(FaA) (Ox, ) I"(G,A):(Ox,A)
0.4, if (F,A) < (H,A) <(G,A),
(F,A) £ (H, A) © (H, A)
W AAG AN =9 07 i (0x, A) # (F, A) < (H, A) & (H, A)
1 < glG A", (H,A) £ (G, A)7,
, otherwise,

0, if (F,A) = (0x, A) or (G, A) = (Ox, A)
52((F>A)>(Gv A)) = { 0.5, if (F7 A) < (K7 A) < (G7 )*7

1, otherwise,
But §; for i = 1,2, is not a soft L-fuzzy quasi-proximity because

1= /\(F,A)GS(X,A)((sl((Hﬂ A) © (H,A), (F,A)) @ 61 ((F*, A), (H, A)* ® (H, A)*))
£ 61((H,A)® (H, A),(H,A)* ® (H,A)*) = 0.7.

1= /\(F,A)ES(X,A)((Sl((Ha A) © (Hv A)v (F> A)) ® 51((F*>A)> (Ha A)* S (Hv A)*))
£ 61((H,A)® (H, A),(H,A)* @& (H,A)*) =0.7.

(2) By Theorem 3.1, let f1 = fo : X — S and ¢1 = ¢ : A — A be identity maps.
We obtain the coarsest soft L-fuzzy preproximity ¢ : S(X, A) x S(X,A) — L which
is finer than §;, ¢ = 1,2, as follows

0, i (F,A) = (0x, A) or (G, A) = (0x, A)
04, if (F.A) < (H, A) < (G, A),
(F,A) £ (H,A) © (H, A)
0.5, if (F,A) < (K. A) < (G, A,
_ (FLA) £ (H,A) o (K, A)
HEA) (G AN =9 07, it (0x, A) # (F, A) < (H,A) © (H, A)
< (G,A)", (H,A) £ (G, A),
0.9, if (Ox,A) # (F.A) < (H.A) © (K, A)
< (G,A)", (H,A) £ (K, A)",
1, otherwise.
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