INITIAL SOFT L-FUZZY PREPROXIMITIES

Young Sun Kim^a and Yong Chan Kim^{b,*}

ABSTRACT. In this paper, we introduce the notions of soft L-fuzzy preproximities in complete residuated lattices. We prove the existence of initial soft L-fuzzy preproximities. From this fact, we define subspaces and product spaces for soft L-fuzzy preproximity spaces. Moreover, we give their examples.

1. Introduction

Hájek [5] introduced a complete residuated lattice which is an algebraic structure for many valued logic. It is an important mathematical tool for algebraic structures [6,7-9]. Recently, Molodtsov [11] introduced the soft set as a mathematical tool for dealing information as the uncertainty of data in engineering, physics, computer sciences and many other diverse field. Presently, the soft set theory is making progress rapidly [1,4]. Pawlak's rough set [12,13] can be viewed as a special case of soft rough sets [4]. The topological structures of soft sets have been developed by many researchers [2,7-9,15-17].

Čimoka et.al [3] introduced L-fuzzy syntopogenous structures as fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities in a complete residuated lattice. Kim [7] introduced a fuzzy soft $F:A\to L^U$ as an extension as the soft $F:A\to P(U)$ where L is a complete residuated lattice. Kim [7-9] introduced the soft topological structures, soft L-fuzzy quasi-uniformities and soft L-fuzzy topogenous orders in complete residuated lattices.

In this paper, we prove the existence of initial soft L-fuzzy preproximities. From this fact, we define subspaces and product spaces for soft L-fuzzy preproximity spaces. Moreover, we give their examples.

Received by the editors March 01, 2016. Accepted April 27, 2016.

²⁰¹⁰ Mathematics Subject Classification. 03E72, 03G10, 06A15, 54F05.

 $Key\ words\ and\ phrases.$ complete residuated lattices, (initial) soft L-preproximities, fuzzy proximity soft maps.

^{*}Corresponding author.

2. Preliminaries

Definition 2.1 ([5,6]). An algebra $(L, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is called a *complete residuated lattice* if it satisfies the following conditions:

- (C1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a complete lattice with the greatest element 1 and the least element 0;
 - (C2) $(L, \odot, 1)$ is a commutative monoid;
 - (C3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

In this paper, we assume that $(L, \leq, \odot, \rightarrow, \oplus, *)$ is a complete residuated lattice with an order reversing involution * which is defined by $x \oplus y = (x^* \odot y^*)^*$ and $x^* = x \to 0$.

Lemma 2.2 ([5,6]). For each $x, y, z, x_i, y_i, w \in L$, we have the following properties.

- (1) $1 \to x = x, \ 0 \odot x = 0,$
- (2) If $y \le z$, then $x \odot y \le x \odot z$, $x \oplus y \le x \oplus z$, $x \to y \le x \to z$ and $z \to x \le y \to x$,
- (3) $x \odot y \le x \land y \le x \lor y \le x \oplus y$,
- (4) $(\bigwedge_i y_i)^* = \bigvee_i y_i^*, (\bigvee_i y_i)^* = \bigwedge_i y_i^*,$
- (5) $x \odot (\bigvee_i y_i) = \bigvee_i (x \odot y_i),$
- (6) $x \oplus (\bigwedge_i y_i) = \bigwedge_i (x \oplus y_i),$
- (7) $x \to (\bigwedge_i y_i) = \bigwedge_i (x \to y_i),$
- (8) $(\bigvee_i x_i) \to y = \bigwedge_i (x_i \to y),$
- (9) $x \to (\bigvee_i y_i) \ge \bigvee_i (x \to y_i),$
- (10) $(\bigwedge_i x_i) \to y \ge \bigvee_i (x_i \to y),$
- $(11) (x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z),$
- (12) $x \odot (x \to y) \le y$ and $x \to y \le (y \to z) \to (x \to z)$,
- $(13) (x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w),$
- $(14) (x \rightarrow y) \odot (z \rightarrow w) < (x \oplus z) \rightarrow (y \oplus w),$
- (15) $x \to y \le (x \odot z) \to (y \odot z)$ and $(x \to y) \odot (y \to z) \le x \to z$,
- $(16) \ x \odot y \odot (z \odot w) \le (x \odot z) \oplus (y \odot w).$
- (17) $x \to y = y^* \to x^*$.

Definition 2.3 ([7-9]). Let X be an initial universe of objects and E the set of parameters (attributes) in X. A pair (F,A) is called a *fuzzy soft set* over X, where $A \subset E$ and $F: A \to L^X$ is a mapping. We denote S(X,A) as the family of all fuzzy soft sets under the parameter A.

Definition 2.4 ([7-9]). Let (F, A) and (G, A) be two fuzzy soft sets over a common universe X.

- (1) (F,A) is a fuzzy soft subset of (G,A), denoted by $(F,A) \leq (G,A)$ if $F(\epsilon) \leq$ $G(\epsilon)$, for each $\epsilon \in A$.
 - (2) $(F, A) \wedge (G, A) = (F \wedge G, A)$ if $(F \wedge G)(\epsilon) = F(\epsilon) \wedge G(\epsilon)$ for each $\epsilon \in A$.
 - (3) $(F, A) \vee (G, A) = (F \vee G, A)$ if $(F \vee G)(\epsilon) = F(\epsilon) \vee G(\epsilon)$ for each $\epsilon \in A$.
 - (4) $(F, A) \odot (G, A) = (F \odot G, A)$ if $(F \odot G)(\epsilon) = F(\epsilon) \odot G(\epsilon)$ for each $\epsilon \in A$.
 - (5) $(F,A)^* = (F^*,A)$ if $F^*(\epsilon) = (F(\epsilon))^*$ for each $\epsilon \in A$.
 - (6) $(F, A) \oplus (G, A) = (F \oplus G, A)$ if $(F \oplus G)(\epsilon) = (F^*(\epsilon) \odot G^*(\epsilon))^*$ for each $\epsilon \in A$.

Definition 2.5 ([8,9]). Let S(X,A) and S(Y,B) be the families of all fuzzy soft sets over X and Y, respectively. The mapping $f_{\phi}: S(X,A) \to S(Y,B)$ is a soft mapping where $f: X \to Y$ and $\phi: A \to B$ are mappings.

(1) The image of $(F, A) \in S(X, A)$ under the mapping f_{ϕ} is denoted by $f_{\phi}((F, A))$ $=(f_{\phi}(F),B)$ where

$$f_{\phi}(F)(b)(y) = \begin{cases} \bigvee_{a \in \phi^{-1}(\{b\})} (f_{\phi}(F(a))(y), & \text{if } \phi^{-1}(\{b\}) \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

(2) The inverse image of $(G, B) \in S(Y, B)$ under the mapping f_{ϕ} is denoted by $f_{\phi}^{-1}((G,B)) = (f_{\phi}^{-1}(G),A)$ where

$$f_{\phi}^{-1}(G)(a)(x) = f_{\phi}^{-1}(G(\phi(a)))(x), \ \forall a \in A, x \in X.$$

(3) The soft mapping $f_{\phi}: S(X,A) \to S(Y,B)$ is called injective (resp. surjective, bijective) if f and ϕ are both injective (resp. surjective, bijective).

Lemma 2.6 ([8,9]). Let $f_{\phi}: S(X,A) \rightarrow S(Y,B)$ be a soft mapping. Then we have the following properties. For $(F,A), (F_i,A) \in S(X,A)$ and $(G,B), (G_i,B) \in$ S(Y,B),

- (1) $(G, B) \ge f_{\phi}(f_{\phi}^{-1}((G, B)))$ with equality if f is surjective,
- (2) $(F, A) \leq f_{\phi}^{-1}(f_{\phi}((F, A)))$ with equality if f is injective,
- (3) $f_{\phi}^{-1}(\bigvee_{i \in I}(G_i, B)) = \bigvee_{i \in I} f_{\phi}^{-1}((G_i, B)),$
- (4) $f_{\phi}^{-1}(\bigwedge_{i \in I}(G_i, B)) = \bigwedge_{i \in I} f_{\phi}^{-1}((G_i, B)),$
- (5) $f_{\phi}(\bigvee_{i \in I}(F_i, A)) = \bigvee_{i \in I} f_{\phi}((F_i, A)),$
- (6) $f_{\phi}(\bigwedge_{i\in I}(F_i,A)) \leq \bigwedge_{i\in I} f_{\phi}((F_i,A))$ with equality if f is injective,
- (7) $f_{\phi}^{-1}((G_1, B) \odot (G_2, B)) = f_{\phi}^{-1}((G_1, B)) \odot f_{\phi}^{-1}((G_2, B)),$ (8) $f_{\phi}^{-1}((G_1, B) \oplus (G_2, B)) = f_{\phi}^{-1}((G_1, B)) \oplus f_{\phi}^{-1}((G_2, B)),$

(9) $f_{\phi}((F_1, A) \odot (F_2, A)) \leq f_{\phi}((F_1, A)) \odot f_{\phi}((F_2, A))$ with equality if f is injective. (10) $f_{\phi}((F_1, A) \oplus (F_2, A)) \leq f_{\phi}((F_1, A)) \oplus f_{\phi}((F_2, A))$.

Definition 2.7. A function $\delta: L^X \times L^X \to L$ is called a *soft L-fuzzy pre-proximity* on X if it satisfies the following conditions:

(SP1)
$$\delta((1_X, A), (0_X, A)) = 0$$
 and $\delta((0_X, A), (1_X, A)) = 0$.

(SP2) If
$$(F, A) \leq (F_1, A)$$
 and $(G, A) \leq (G_1, A)$, then

$$\delta((F, A), (G, A)) \le \delta((F_1, A), (G_1, A)).$$

(SP3) If
$$\delta((F, A), (G, A)) \neq 1$$
, then $(F, A) \leq (G, A)^*$.

(SP4)

$$\delta((F_1, A) \odot (F_2, A), (H_1, A) \oplus (H_2, A)) \leq \delta((F_1, A), (H_1, A)) \oplus \delta((F_2, A), (H_2, A)).$$

The triple (X, A, δ) is said to be a soft L-fuzzy pre-proximity space.

A soft L-fuzzy pre-proximity space is called a soft L-fuzzy quasi-proximity if (SQ)

$$\delta((F,A),(G,A)) \ge \bigwedge_{(H,A)\in S(X,A)} \{\delta((F,A),(H,A)) \oplus \delta((H,A)^*,(G,A))\}.$$

A soft L-fuzzy pre-proximity space is called perfect if

(P)
$$\delta(\bigvee_{i\in I}(F_i, A), (G, A)) \leq \bigvee_{i\in I} \delta((F_i, A), (G, A)).$$

Let (X, A, δ_1) and (X, A, δ_2) be soft L-fuzzy pre-proximity spaces. We say that δ_1 is finer than δ_2 (δ_2 is coarser than δ_1) if $\delta_1((F, A), (G, A)) \leq \delta_2((F, A), (G, A))$ for all $(F, A), (G, A) \in S(X, A)$.

Let (X, A, δ_X) and (Y, B, δ_Y) be soft L-fuzzy pre-proximity spaces and $f_{\phi}: X \to Y$ be a soft map. Then f is called a fuzzy proximity soft map if $\forall (F, A), (G, A) \in S(X, A), \delta_X((F, A), (G, A)) \leq \delta_X((f_{\phi}((F, A)), (f_{\phi}((G, A)))).$

Remark 2.8. (1) If a complete residuated lattice $(L, \leq, \odot, \oplus, *)$ is a completely distributive lattice $(L, \leq, \wedge, \vee, *)$ with a strong negation * with $\odot = \wedge$ and $\oplus = \vee$, the above definition coincide with that in the sense [3].

(2) Let (X, A, δ) be a soft L-fuzzy pre-proximity space. By (SP4), we have

$$\delta(\odot_{i=1}^p(F_i,A), \oplus_{k=1}^p(G_k,A)) \le \bigwedge_{\sigma \in K} (\oplus_{i=1}^p \delta((F_i,A), (G_{\sigma(i)},A)))$$

where $K = {\sigma \mid \sigma : \{1, 2, ..., p\} \rightarrow \{1, 2, ..., p\}}$ is a bijective function}.

(3) Let L be an idempotent complete residuated lattice, that is, $x \odot x = x$, for each $x \in L$. Since $(F, A) \odot (F, A) = (F, A)$ and $(G, A) \oplus (G, A) = (G, A)$, then $\delta((F, A), (G_1, A) \oplus (G_2, A)) \leq \delta((F, A), (G_1, A)) \oplus \delta((F, A), (G_2, A))$ and $\delta((F_1, A) \odot (F_2, A), (G, A)) \leq \delta((F_1, A), (G, A)) \oplus \delta((F_2, A), (G, A))$.

3. Initial soft L-fuzzy Preproximities

Theorem 3.1. Let $\{(X_i, A_i, \delta_i) \mid i \in \Gamma\}$ be a family of soft L-fuzzy pre-proximity spaces. Let X be a set and, for each $i \in \Gamma$, $f_i : X \to X_i$ and $\phi_i : A \to A_i$ mappings. Define the function $\delta : S(X, A) \times S(X, A) \to L$ on X by

$$\delta((F,A),(G,A)) = \bigwedge \Big\{ \bigwedge_{\sigma \in K} \Big\{ \bigoplus_{j=1}^{p} \Big(\bigwedge_{i \in \Gamma} \delta_{i}((f_{i})_{\phi_{i}}((F_{j},A)),(f_{i})_{\phi_{i}}((G_{\sigma(j)},A))) \Big) \Big\} \Big\},$$

where the first \bigwedge is taken over all two finite families $\{(F_j, A) \mid (F, A) = \bigcirc_{j=1}^p (F_j, A)\}$, $\{(G_k, A) \mid (G, A) = \bigoplus_{j=1}^p (G_{\sigma(j)}, A)\}$ and

$$K = \{ \sigma \mid \sigma : \{1, ..., p\} \rightarrow \{1, ..., p\} \text{ is a bijective function} \}.$$

Then:

- (1) δ is the coarsest soft L-fuzzy pre-proximity on X which all $(f_i)_{\phi_i}$, $i \in \Gamma$, are fuzzy proximity soft maps.
- (2) If $\{(X_i, A_i, \delta_i) \mid i \in \Gamma\}$ is a family of soft L-fuzzy quasi-proximity spaces, δ is a soft L-fuzzy quasi-proximity on X.
- (3) A map $f_{\phi}: (Y, B, \delta_0) \to (X, A, \delta)$ is a fuzzy proximity soft map iff each $(f_i)_{\phi_i} \circ f_{\phi}: (Y, B, \delta_0) \to (X_i, A_i, \delta_i)$ is a fuzzy proximity soft map.
- *Proof.* (1) First, we will show that δ is a soft L-fuzzy pre-proximity on X.
- (SP1) Since $\delta((F, A), (0_X, A)) \leq \delta_i((f_i)_{\phi_i}((F, A)), (0_{X_i}, A_i)) = 0$ for all $(F, A) \in S(X, A)$, it is clear.
 - (SP2) It follows from the definition of δ .
 - (SP3) We will show that if $(F,A) \nleq (G,A)^*$, then $\delta((F,A),(G,A)) = 1$.

Let $(F,A) \not\leq (G,A)^*$. Then, for every two finite families $\{(F_j,A) \mid (F,A) = \bigoplus_{j=1}^p (F_j,A)\}$ and $\{(G_k,A) \mid (G,A) = \bigoplus_{k=1}^p (G_k,A)\}$ and $\sigma \in K$, there exist $j_0,\sigma(j_0)$, x_0 such that $(F_{j_0},A)(x_0) \not\leq (G_{\sigma(j_0)},A)(x_0)^*$. It follows that, for all $i \in \Gamma$,

$$(f_i)_{\phi_i}((F_{j_0}, A))((f_i)_{\phi_i}(x_0)) \not\leq (f_i)_{\phi_i}((G_{\sigma(j_0)}, A))((f_i)_{\phi_i}(x_0))^*.$$

Since δ_i is a soft L-fuzzy pre-proximity on X_i , for each $i \in \Gamma$, by (SP3),

$$\delta_i((f_i)_{\phi_i}((F_{j_0}, A)), (f_i)_{\phi_i}((G_{\sigma(j_0)}, A))) = 1.$$

So, $\bigwedge_{i\in\Gamma} \delta_i((f_i)_{\phi_i}((F_{j_0},A)),(f_i)_{\phi_i}((G_{\sigma(j_0)},A))) = 1$. By Lemma 2.2(3), it follows

$$\bigoplus_{j=1}^{p} \left(\bigwedge_{i \in \Gamma} \delta_i((f_i)_{\phi_i}((F_j, A)), (f_i)_{\phi_i}((G_{\sigma(j)}, A))) \right) = 1,$$

for every two finite families $\{(F_j, A) \mid (F, A) = \bigcirc_{j=1}^p (F_j, A)\}$ and $\{(G_k, A) \mid (G, A) = \bigoplus_{k=1}^p (G_k, A)\}$ and $\sigma \in K$. Hence $\delta((F, A), (G, A)) = 1$.

(SP4) Suppose there exist $(F_i, A), (G_i, A) \in S(X, A)$ such that

$$\delta((F_1, A) \odot (F_2, A), (G_1, A) \oplus (G_2, A))$$

 $\not\leq \delta((F_1, A), (G_1, A)) \oplus \delta((F_2, A), (G_2, A)).$

By the definition of $\delta((F_1, A), (G_1, A))$ and Lemma 2.2(6), there exist two finite families $\{(F_{1_j}, A) \mid (F_1, A) = \bigcirc_{j=1}^p (F_{1_j}, A)\}$ and $\{(G_{1_{\sigma(j)}}, A) \mid (G_1, A) = \bigoplus_{j=1}^p (G_{1_{\sigma(j)}}, A)\}$ with a bijective function σ , we have

$$\delta((F_1, A) \odot (F_2, A), (G_1, A) \oplus (G_2, A))$$

$$\not\leq \left\{ \bigoplus_{j=1}^{p} \left(\bigwedge_{i \in \Gamma} \delta_i((f_i)_{\phi_i}((F_{1_j}, A)), (f_i)_{\phi_i}((G_{1_{\sigma(j)}}, A))) \right) \right\} \oplus \delta((F_2, A), (G_2, A))$$

Again, by the definition of $\delta((F_2, A), (G_2, A))$ and Lemma 2.2(6), there exist two finite families $\{(F_{2_k}, A) \mid (F_2, A) = \odot_{k=1}^q (F_{2_k}, A)\}$ and $\{(G_{2_{\epsilon(k)}}, A) \mid (F_2, A) = \bigoplus_{k=1}^q (G_{2_{\epsilon(k)}}, A)\}$ with a bijective function ϵ , we have

$$\delta((F_{1}, A) \odot (F_{2}, A), (G_{1}, A) \oplus (G_{2}, A))$$

$$\not\leq \left\{ \bigoplus_{j=1}^{p} \left(\bigwedge_{i \in \Gamma} \delta_{i}((f_{i})_{\phi_{i}}((F_{1_{j}}, A)), (f_{i})_{\phi_{i}}((G_{1_{\sigma(j)}}, A))) \right) \right\}$$

$$\oplus \left\{ \bigoplus_{k=1}^{q} \left(\bigwedge_{i \in \Gamma} \delta_{i}((f_{i})_{\phi_{i}}((F_{2_{k}}, A), (f_{i})_{\phi_{i}}((G_{2_{\epsilon(k)}}, A))) \right) \right\}$$

By Lemma 2.2(6), for each $j, \sigma(j)$ and $k, \epsilon(k)$, there exist $i_j, i_k \in \Gamma$ such that

$$\delta((F_{1}, A) \odot (F_{2}, A), (G_{1}, A) \oplus (G_{2}, A))$$

$$\not\leq \left\{ \bigoplus_{j=1}^{p} \left(\delta_{i_{j}}((f_{i_{j}})_{\phi_{i_{j}}}((F_{1_{j}}, A)), (f_{i_{j}})_{\phi_{i_{j}}}((G_{1_{\sigma(j)}}, A))) \right) \right\}$$

$$\oplus \left\{ \bigoplus_{k=1}^{q} \left(\delta_{i_{k}}((f_{i_{j}})_{\phi_{i_{k}}}((F_{2_{k}}, A)), (f_{i_{j}})_{\phi_{i_{k}}}((G_{2_{\epsilon(k)}}, A))) \right) \right\}$$

On the other hand, since

$$(F_1, A) \odot (F_2, A) = \left(\odot_{j=1}^p (F_{1_j}, A) \right) \odot \left(\odot_{k=1}^q (F_{2_k}, A) \right),$$

$$(G_1, A) \oplus (G_2, A) = \left(\oplus_{j=1}^p (G_{1_{\sigma(j)}}, A) \right) \oplus \left(\oplus_{k=1}^q (G_{2_{\epsilon(k)}}, A) \right),$$

for a bijective function $\sigma \cup \epsilon$, we have

$$\begin{split} &\delta((F_1,A)\odot(F_2,A),(G_1,A)\oplus(G_2,A))\\ &\leq \Big\{ \oplus_{j=1}^p \Big(\delta_{i_j}((f_{i_j})_{\phi_{i_j}}((F_{1_j},A)),(f_{i_j})_{\phi_{i_j}}((G_{1_{\sigma(j)}},A))) \Big) \Big\}\\ &\oplus \Big\{ \oplus_{k=1}^q \Big(\delta_{i_k}((f_{i_j})_{\phi_{i_k}}((F_{2_k},A)),(f_{i_j})_{\phi_{i_k}}((G_{2_{\epsilon(k)}},A))) \Big) \Big\}. \end{split}$$

It is a contradiction. Hence the condition (SP4) holds.

Second, from the definition of δ , for two families $\{(F,A) \mid (F,A) = (F,A)\}$ and $\{(G,A) \mid (G,A) = (G,A)\}$, since

$$\delta((F, A), (G, A)) \leq \bigwedge_{i \in \Gamma} \delta_i((f_i)_{\phi_i}((F, A)), (f_i)_{\phi_i}((G, A)))
\leq \delta_i((f_i)_{\phi_i}((F, A)), (f_i)_{\phi_i}((G, A))),$$

for each $i \in \Gamma$, $(f_i)_{\phi_i} : (X, A, \delta) \to (X_i, A_i, \delta_i)$ is a fuzzy proximity soft map.

If all $(f_i)_{\phi_i}: (X, A, \delta_0) \to (X_i, A_i, \delta_i)$ are fuzzy proximity soft maps, then, for all two finite families $\{(F_j, A) \mid (F, A) = \odot_{j=1}^p(F_j, A)\}$ and $\{(G_k, A) \mid (G, A) = \oplus_{k=1}^p(G_k, A)\}$ and $\sigma \in K$,

$$\begin{array}{ll} \delta((F,A),(G,A)) &= \bigwedge \{ \oplus_{j=1}^p \bigwedge_{i \in \Gamma} \delta_i((f_i)_{\phi_i}((F_j,A)),(f_i)_{\phi_i}((G_{\sigma(j)},A))) \} \\ &\geq \bigwedge \{ \oplus_{j=1}^p \delta_0((F_j,A),(G_{\sigma(j)},A)) \} \\ &\geq \delta_0((F,A),(G,A)). \quad \text{(by Remark 2.8(2))} \end{array}$$

Thus, $\delta_0((F, A), (G, A)) \leq \delta((F, A), (G, A))$ for each $(F, A), (G, A) \in S(X, A)$.

(2) Let $\{(X_i, A_i, \delta_i) \mid i \in \Gamma\}$ be a family of soft L-fuzzy quasi-proximity spaces. We will show that δ is an soft L-fuzzy quasi-proximity on X.

Suppose there exist $(F, A), (G, A) \in S(X, A)$ such that

$$\delta((F,A),(G,A)) \not\geq \bigwedge_{(H,A)\in S(X,A)} \{\delta((F,A),(H,A)) \oplus \delta((H^*,A),(G,A))\}.$$

By the definition of δ , there are finite families $\{(F_j, A) \mid (F, A) = \bigcirc_{j=1}^p (F_j, A)\}$ and $\{(G_k, A) \mid (G, A) = \bigoplus_{k=1}^p (G_k, A)\}$ and a bijective function σ such that

$$\bigoplus_{j=1}^{p} \left\{ \bigwedge_{i \in \Gamma} \delta_{i}((f_{i})_{\phi_{i}}((F_{j}, A)), (f_{i})_{\phi_{i}}((G_{\sigma(j)}, A))) \right\} \\
\geq \bigwedge_{(H, A) \in S(X, A)} \left\{ \delta((F, A), (H, A)) \oplus \delta((H^{*}, A), (G, A)) \right\}.$$

It follows that for any $j, \sigma(j)$, there exists an $i_j \in \Gamma$ such that

$$\bigoplus_{j=1}^{p} \left\{ \delta_{i_{j}}((f_{i_{j}})_{\phi_{i_{j}}}((F_{j},A)), (f_{i_{j}})_{\phi_{i_{j}}}((G_{\sigma(j)},A))) \right\} \\
\geq \bigwedge_{(H,A) \in S(X,A)} \left\{ \delta((F,A), (H,A)) \oplus \delta((H^{*},A), (G,A)) \right\}.$$

Since δ_{i_j} is a soft *L*-fuzzy quasi-proximity on X_{i_j} , by (SQ), there exists $(H_{i_j}, A_{i_j}) \in S(X_{i_j}, A_{i_j})$ such that

(B)

$$\bigoplus_{j=1}^{p} \left\{ \delta_{i_{j}}((f_{i_{j}})_{\phi_{i_{j}}}((F_{j},A)), (H_{i_{j}},A_{i_{j}}))) \oplus \delta_{i_{j}}((H_{i_{j}}^{*},A_{i_{j}}), (f_{i_{j}})_{\phi_{i_{j}}}((G_{\sigma(j)},A))) \right\} \\
\geq \bigwedge_{(H,A) \in S(X,A)} \left\{ \delta((F,A), (H,A)) \oplus \delta((H^{*},A), (G,A)) \right\}.$$

On the other hand, put $(H,A) = \bigoplus_{j=1}^p (f_{i_j})_{\phi_{i_j}}^{-1}((H_{i_j},A_{i_j}))$. Since

$$(f_{i_j})_{\phi_{i_j}}((f_{i_j})_{\phi_{i_j}}^{-1}((H_{i_j}, A_{i_j}))) \le (H_{i_j}, A_{i_j}),$$

for the identity $\sigma(j) = j$, then

$$\delta((F,A),(H,A)) \leq \bigoplus_{k=1}^{p} \delta_{i_j}((f_{i_j})_{\phi_{i_j}}((F_j,A)),(f_{i_j})_{\phi_{i_j}}((f_{i_j})_{\phi_{i_j}}^{-1}((H_{i_j},A_{i_j}))))$$

$$\leq \bigoplus_{k=1}^{p} \delta_{i_j}((f_{i_j})_{\phi_{i_j}}((F_j,A)),(H_{i_j},A_{i_j})).$$

Since
$$(H, A)^* = \bigoplus_{j=1}^p (f_{i_j})_{\phi_{i_j}}^{-1} ((H_{i_j}, A_{i_j})^*)$$
, for $\sigma \in K$, we have

$$\delta((H^*, A), (G, A)) \leq \bigoplus_{j=1}^p \delta_{i_j}((f_{i_j})_{\phi_{i_j}}((f_{i_j})_{\phi_{i_j}}^{-1}((H_{i_j}, A_{i_j}))^*), (f_{i_j})_{\phi_{i_j}}((G_{\sigma(j)}, A)))$$

$$\leq \bigoplus_{j=1}^p \delta_{i_j}((H_{i_j}, A_{i_j})^*, (f_{i_j})_{\phi_{i_j}}((G_{\sigma(j)}, A))).$$

It implies

$$\delta((F,A),(H,A)) \oplus \delta((H^*,A),(G,A))$$

$$\leq \bigoplus_{j=1}^{p} \delta_{i_j}((f_{i_j})_{\phi_{i_j}}((F_j,A)),(H_{i_j},A_{i_j})) \oplus \left\{ \bigoplus_{j=1}^{p} \delta_{i_j}((H_{i_j}^*,A_{i_j}),(f_{i_j})_{\phi_{i_j}}((G_{\sigma(j)},A))) \right\}$$

$$= \bigoplus_{j=1}^{p} \left\{ \delta_{i_j}((f_{i_j})_{\phi_{i_j}}((F_j,A)),(H_{i_j},A_{i_j})) \oplus \delta_{i_j}((H_{i_j}^*,A_{i_j}),(f_{i_j})_{\phi_{i_j}}((G_{\sigma(j)},A))) \right\}.$$

It is a contradiction for (B). Thus, the result follows.

(3) Necessity of the composition condition is clear since the composition of fuzzy proximity soft maps is a fuzzy proximity soft map.

Each two finite families $\{(F_j,A)\mid f_\phi((F,A))=\odot_{j=1}^p(F_j,A)\}$ and $\{(G_k,A)\mid f_\phi((G,A))=\oplus_{k=1}^p(G_k,A)\}$ and each $\sigma\in K$, we have

$$\delta(f_{\phi}((F,A)), f_{\phi}((G,A)))$$

$$= \bigwedge \left\{ \bigoplus_{j=1}^{p} \left(\bigwedge_{i \in \Gamma} \delta_{i}((f_{i})_{\phi_{i}}((F_{j},A)), (f_{i})_{\phi_{i}}((G_{\sigma(j)},A))) \right) \right\}.$$

It follows

$$(F,A) \le f_{\phi}^{-1}(f_{\phi}((F,A))) = \bigoplus_{j=1}^{p} f_{\phi}^{-1}((F_{j},A)) \text{ and } (G,A) \le \bigoplus_{k=1}^{p} f_{\phi}^{-1}((G_{\sigma(j)},A)).$$

Since $(f_i)_{\phi_i} \circ f_{\phi}$ is a fuzzy proximity soft map and for any $j, \sigma(j)$,

$$(f_i)_{\phi_i}(f_{\phi}(f_{\phi}^{-1}((F_j, A)))) \le (f_i)_{\phi_i}((F_j, A)),$$

$$\delta_0(f_{\phi}^{-1}((F_j, A)), f_{\phi}^{-1}((G_{\sigma(j)}, A)) \le \delta_i((f_i)_{\phi_i}((F_j, A)), (f_i)_{\phi_i}((G_{\sigma(j)}, A))).$$

Since $(F,A) \leq \bigoplus_{j=1}^p f_{\phi}^{-1}((F_j,A))$, we have, for all $j,\sigma(j)$ and $i \in \Gamma$,

$$\delta_{0}((F, A), (G, A)) \leq \bigwedge_{\sigma \in K} \left\{ \bigoplus_{j=1}^{p} \delta_{0}(f_{\phi}^{-1}((F_{j}, A)), f_{\phi}^{-1}((G_{\sigma(j)}, A))) \right\}
\text{(by Remark 2.8(2))}
\leq \bigwedge_{\sigma \in K} \left\{ \bigoplus_{j=1}^{p} \bigwedge_{i \in \Gamma} \delta_{i}((f_{i})_{\phi_{i}}((F_{j}, A)), (f_{i})_{\phi_{i}}((G_{\sigma(j)}, A))) \right\}$$

Hence
$$\delta_0((F, A), (G, A)) \leq \delta(f_\phi((F, A)), f_\phi((G, A))).$$

From Remark 2.8(3) and Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let (L, \odot, \leq) be an idempotent complete residuated lattice. Let $\{(X_i, A_i, \delta_i) \mid i \in \Gamma\}$ be a family of soft L-fuzzy pre-proximity spaces. Let X be a

set and, for each $i \in \Gamma$, $f_i : X \to X_i$ a mapping. Define the function $\delta : S(X, A) \times S(X, A) \to L$ on X by

$$\delta((F,A),(G,A)) = \bigwedge \Big\{ \bigoplus_{j=1}^{p} \Big(\bigwedge_{i \in \Gamma} \delta_i((f_i)_{\phi_i}((F_j,A)),(f_i)_{\phi_i}((G_k,A))) \Big) \Big\},$$

where the first \wedge is taken over all two finite families $\{(F_j, A) \mid (F, A) = \bigcirc_{j=1}^p (F_j, A)\}$ and $\{(G_k, A) \mid (G, A) = \bigoplus_{k=1}^q (G_k, A)\}$. Then δ is the coarsest soft L-fuzzy preproximity on X which for each $i \in \Gamma$, $(f_i)_{\phi_i}$ is a fuzzy proximity soft map.

Let **SPROX** be a category with object (X, A, δ_X) where δ_X is a soft L-fuzzy preproximity with a morphism $f_{\phi}: (X, A, \delta_X) \to (Y, B, \delta_Y)$ is a fuzzy proximity soft map. Let **SET** be a category with object (X, f) where X is a set with a morphism $f: X \to Y$ is a function.

Theorem 3.3. The forgetful functor $U : \mathbf{SPROX} \to \mathbf{Set}$ defined by $U(X, A, \delta) = X$ and U(f) = f is topological.

Proof. From Theorem 3.1, every U-structured source $(f_i: X \to U(X_i, A_i, \delta_i))_{i \in \Gamma}$ has a unique U-initial lift $(f_i: (X, A, \delta) \to (X_i, \delta_i))_{i \in \Gamma}$ where δ in Theorem 3.1. \square

Corollary 3.4. Let (Y, B, δ_Y) be a soft L-fuzzy pre-proximity space. Let X be a set, $f: X \to Y$ and $\phi: A \to B$ mappings. Define the function $\delta: S(X, A) \times S(X, A) \to L$ on X by

$$\delta((F,A),(G,A)) = \bigwedge \Big\{ \bigwedge_{\sigma \in K} \Big\{ \bigoplus_{j=1}^{p} \Big(\delta_{Y}(f_{\phi}((F_{j},A)), f_{\phi}((G_{\sigma(j)},A))) \Big) \Big\} \Big\},$$

where the first \wedge is taken over all two finite families $\{(F_j, A) \mid (F, A) = \bigcirc_{j=1}^p (F_j, A)\}$, $\{(G_{\sigma(j)}, A) \mid (G, A) = \bigoplus_{j=1}^p (G_{\sigma(j)}, A)\}$ and

$$A = \{ \sigma \mid \sigma : \{1, ..., p\} \rightarrow \{1, ..., p\} \text{ is a bijective function} \}.$$

Then δ is the coarsest soft L-fuzzy pre-proximity on X which f_{ϕ} is a fuzzy proximity soft map such that

$$\delta((F,A),(G,A)) = \delta_Y(f_\phi((F,A)),f_\phi((G,A))).$$

Proof. From Theorem 3.1 and the definition of $\delta((F,A),(G,A))$, we only show:

$$\delta((F,A),(G,A)) \geq \delta_Y(f_\phi((F,A)),f_\phi((G,A))).$$

Suppose $\delta((F, A), (G, A)) \not\geq \delta_Y(f_{\phi}((F, A)), f_{\phi}((G, A)))$. Then there exist two finite families $\{(F_j, A) \mid (F, A) = \bigoplus_{j=1}^p (F_j, A)\}, \{(G_{\sigma(j)}, A) \mid (G, A) = \bigoplus_{j=1}^p (G_{\sigma(j)}, A)\}$

and $\sigma \in K$ such that

$$\bigoplus_{j=1}^{p} \left(\delta_Y(f_\phi((F_j, A)), f_\phi((G_{\sigma(j)}, A))) \right) \not\geq \delta_Y(f_\phi((F, A)), f_\phi((G, A))).$$

On the other hand, since $\bigcirc_{j=1}^p f_{\phi}((F_j, A)) \ge f_{\phi}(\bigcirc_{j=1}^p (F_j, A))$ and $\bigoplus_{j=1}^p f_{\phi}((G_{\sigma(j)}, A)) \ge f_{\phi}(\bigoplus_{j=1}^p (G_{\sigma(j)}, A))$ from Lemma 2.6(9,10), we have

$$\bigoplus_{j=1}^{p} \left(\delta_{Y}(f_{\phi}((F_{j}, A)), f_{\phi}((G_{\sigma(j)}, A))) \right) \geq \delta_{Y}(\bigcirc_{j=1}^{p} f_{\phi}((F_{j}, A)), \bigoplus_{j=1}^{p} f_{\phi}((G_{\sigma(j)}, A))) \\
\geq \delta_{Y}(f_{\phi}(\bigcirc_{j=1}^{p} (F_{j}, A)), f_{\phi}(\bigoplus_{j=1}^{p} (G_{\sigma(j)}, A))) = \delta_{Y}(f_{\phi}((F, A)), f_{\phi}((G, A))).$$

It is a contradiction. Hence the result holds.

Definition 3.5. Let (X, A, δ_X) be a soft L-fuzzy pre-proximity space, $Z \subset X$ and $C \subset A$. The pair (Z, C, δ) is said to be a *subspace* of (X, A, δ_X) if it is endowed with the initial soft L-fuzzy pre-proximity with respect to $(Z, i, (X, \delta_X))$ where i is the inclusion function. From Corollary 3.8, we define the function $\delta : L^Z \times L^Z \to L$ on A by

$$\delta((F, A), (G, A)) = \delta_X(i_i((F, A)), i_i((G, A))).$$

Definition 3.6. Let $X = \prod_{i \in \Gamma} X_i$ be the product of the sets from family $\{(X_i, A_i, \delta_i) | i \in \Gamma\}$ of soft L-fuzzy pre-proximity spaces. The initial soft L-fuzzy pre-proximity $\delta = \otimes \delta_i$ on X with respect to the family $\{\pi_i : X \to (X_i, A_i, \delta_i) \mid i \in \Gamma\}$ of all projection maps is called the *product soft* L-fuzzy pre-proximity of $\{\delta_i \mid i \in \Gamma\}$, and $(X, \prod_{i \in \Gamma} A_i, \otimes \delta_i)$ is called the *product soft* L-fuzzy pre-proximity space.

Example 3.7. Let $U = \{h_i \mid i = \{1, ..., 6\}\}$ with h_i =house and $E = \{e, b, w, c, i\}$ with e=expensive,b= beautiful, w=wooden, c= creative, i=in the green surroundings. Define a binary operation \odot on [0, 1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}$$

$$x \oplus y = \min\{1, x + y\}, \ x^* = 1 - x$$

Then ([0, 1], \land , \rightarrow , 0, 1) is a complete residuated lattice (ref. [5, 6]). Let $A = \{b, c, i\} \subset E$ and $X = \{h^1, h^4, h^5, h^6\}$. Put (H, A) be a fuzzy soft set as follow:

(1) We define soft L-fuzzy preproximities $\delta_1, \delta_2 : S(X, A) \times S(X, A) \to L$ as

$$\delta_{1}((F,A),(G,A)) = \begin{cases} 0, & \text{if } (F,A) = (0_{X},A) \text{ or } (G,A) = (0_{X},A) \\ 0.4, & \text{if } (F,A) \leq (H,A) \leq (G,A)^{*}, \\ (F,A) \not\leq (H,A) \odot (H,A) \\ 0.7, & \text{if } (0_{X},A) \neq (F,A) \leq (H,A) \odot (H,A) \\ \leq (G,A)^{*}, (H,A) \not\leq (G,A)^{*}, \\ 1, & \text{otherwise}, \end{cases}$$

$$\delta_{2}((F,A),(G,A)) = \begin{cases} 0, & \text{if } (F,A) = (0_{X},A) \text{ or } (G,A) = (0_{X},A) \\ 0.5, & \text{if } (F,A) \leq (K,A) \leq (G,A)^{*}, \\ 1, & \text{otherwise}, \end{cases}$$
is for $i = 1, 2$, is not a soft L-fuzzy quasi-proximity because

$$\delta_2((F,A),(G,A)) = \begin{cases} 0, & \text{if } (F,A) = (0_X,A) \text{ or } (G,A) = (0_X,A) \\ 0.5, & \text{if } (F,A) \le (K,A) \le (G,A)^*, \\ 1, & \text{otherwise,} \end{cases}$$

But δ_i for i = 1, 2, is not a soft L-fuzzy quasi-proximity because

$$1 = \bigwedge_{(F,A) \in S(X,A)} (\delta_1((H,A) \odot (H,A), (F,A)) \oplus \delta_1((F^*,A), (H,A)^* \oplus (H,A)^*))$$

$$\not\leq \delta_1((H,A) \odot (H,A), (H,A)^* \oplus (H,A)^*) = 0.7.$$

$$1 = \bigwedge_{(F,A) \in S(X,A)} (\delta_1((H,A) \odot (H,A), (F,A)) \oplus \delta_1((F^*,A), (H,A)^* \oplus (H,A)^*))$$

$$\not\leq \delta_1((H,A) \odot (H,A), (H,A)^* \oplus (H,A)^*) = 0.7.$$

(2) By Theorem 3.1, let $f_1 = f_2 : X \to S$ and $\phi_1 = \phi_2 : A \to A$ be identity maps. We obtain the coarsest soft L-fuzzy preproximity $\delta: S(X,A) \times S(X,A) \to L$ which is finer than δ_i , i = 1, 2, as follows

$$\delta((F,A),(G,A)) = \begin{cases} 0, & \text{if } (F,A) = (0_X,A) \text{ or } (G,A) = (0_X,A) \\ 0.4, & \text{if } (F,A) \leq (H,A) \leq (G,A)^*, \\ (F,A) \not \leq (H,A) \odot (H,A) \\ 0.5, & \text{if } (F,A) \leq (K,A) \leq (G,A)^*, \\ (F,A) \not \leq (H,A) \odot (K,A) \\ 0.7, & \text{if } (0_X,A) \neq (F,A) \leq (H,A) \odot (H,A) \\ \leq (G,A)^*, (H,A) \not \leq (G,A)^*, \\ 0.9, & \text{if } (0_X,A) \neq (F,A) \leq (H,A) \odot (K,A) \\ \leq (G,A)^*, (H,A) \not \leq (K,A)^*, \\ 1, & \text{otherwise.} \end{cases}$$

References

- 1. K.V. Babitha & J.J. Sunil: Soft set relations and functions. *Compu. Math. Appl.* **60**(2010), 1840-1849.
- 2. N. Cağman, S. Karatas & S. Enginoglu: Soft topology. *Comput. Math. Appl.* **62** (2011), no. 1, 351-358.
- 3. D. Čimoka & A.P. Šostak: *L*-fuzzy syntopogenous structures, Part I: Fundamentals and application to *L*-fuzzy topologies, *L*-fuzzy proximities and *L*-fuzzy uniformities. *Fuzzy Sets and Systems* **232** (2013), 74-97.
- 4. F. Feng, X. Liu, V.L. Fotea & Y.B. Jun: Soft sets and soft rough sets. *Information Sciences* **181** (2011), 1125-1137.
- 5. P. Hájek: *Metamathematices of Fuzzy Logic*. Kluwer Academic Publishers, Dordrecht (1998).
- 6. U. Höhle & S.E. Rodabaugh: *Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory*. The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999.
- 7. Y.C. Kim & J.M. Ko: Soft *L*-topologies and soft *L*-neighborhood systems. *J. Math. Comput. Sci.* (to appear).
- 8. _____: Soft L-uniformities and soft L-neighborhood systems. J. Math. Comput. Sci. (to appear).
- 9. _____: Soft L-fuzzy quasi-uniformities and soft L-fuzzy topogenous orders. Submit to J. Intelligent and Fuzzy Systems.
- 10. R. Lowen: Fuzzy uniform spaces. J. Math. Anal. Appl. 82 (1981), 370-385.
- 11. D. Molodtsov: Soft set theory. Comput. Math. Appl. 37 (1999), 19-31.
- 12. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356.
- 13. _____: Rough probability. Bull. Pol. Acad. Sci. Math. **32** (1984), 607-615.
- 14. A.A. Ramadan, E.H. Elkordy & Y.C. Kim: Perfect *L*-fuzzy topogenous space, *L*-fuzzy quasi-proximities and *L*-fuzzy quasi-uniform spaces. *J. Intelligent and Fuzzy Systems* **28** (2015), 2591-2604.
- M. Shabir & M. Naz: On soft topological spaces. Comput. Math. Appl. 61 (2011), 1786-1799.
- 16. B. Tanay & M.B. Kandemir: Topological structure of fuzzy soft sets. *Comput. Math. Appl.* **61** (2011), no. 10, 2952-2957.
- 17. Hu Zhao & Sheng-Gang Li: L-fuzzifying soft topological spaces and L-fuzzifying soft interior operators. Ann. Fuzzy Math. Inform. 5 (2013), no. 3, 493-503.
- 18. Í. Zorlutuna, M. Akdag, W.K. Min & S. Atmaca: Remarks on soft topological spaces. *Ann. Fuzzy Math. Inform.* **3** (2012), no. 2, 171-185.

^aDEPARTMENT OF APPLIED MATHEMATICS, PAI CHAI UNIVERSITY, DAE JEON, 35345, KOREA *Email address*: yskim@pcu.ac.kr

^bDepartment of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea *Email address*: yck@gwnu.ac.kr