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Y o Abstract
] S In a dynamic environment autonomous robots often encounter unexpected situations that the
robots have to deal with in order to continue proceeding their mission. We propose an adaptive

goal-based model that allows cyber-physical systems (CPS) to update their environmental
model and helps them analyze for attainment of their goals from current state using the updated
environmental model and its capabilities. Information exchange approach utilizes Human-
Agent-Robot-Machine-Sensor (HARMS) model to exchange messages between CPS. Model
validation method uses NuSMYV, which is one of Model Checking tools, to check whether
the system can continue its mission toward the goal in the given environment. We explain a
practical set up of the model in a situation in which homogeneous robots that has the same

capability work in the same environment.
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1. Introduction

Use of automated robots has been shifted from industry to human-friendly environments such
as home, office, school, and public places. Because automated robots are now exposed to a
new dynamic environment rather than a static workspace, such robots face many uncertainties
and have to consider dynamic environmental factors as well as their tasks in order for them to
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challenges in ubiquitous robotics in complex environment is to discern a situation and perform
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a reasonable reaction upon the situation.
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object and becomes at while driving, the vehicle could not be
able to arrive to the destination and the task could not be accom-
plished. Because this change is critical in terms of reliability
of the robot, designers should be able to address those changes
even after they deploy the robot.

The concept of adaptive model is that a model accepts changes
and evolves toward the changes. For autonomous robots, this
charming ability allows them to continue their working when-
ever they encounter unexpected changes. The adaptive model
in the study [4] helps agents reorganize their groups based
on agents capabilities at run-time. Because the authors fo-
cused on organizational aspect, they do not change their original
model. Instead, they rearrange agents to meet the requirement.
Adaptive concept is applied to not only physical changes, but
also software side changes in the field of robotics. R-object
model [5] allows robots to adapt to the environment by re-
linking and reconstructing task schedules with regard to the
current status of robots.

In multi-robot environment, robots share the workspace. A
robot recognizes other robots as environmental entities. From a
robot’s view seeing such environment, complexity of analyzing
the environment increases as number of robot increases. When
robots are doing the same thing (e.g., homogeneous robots),
chance of conflict becomes larger. This phenomenon also in-
dicates that the robot has to have an ability to adapt its model
to the given multi-robot environmental condition. One of the
simpler ways to avoid conflicts is to apply a simple rule-based
algorithm to all agents [6]. On the other hand, another way
to have such ability would be to establish a communication
network among robots, which enables them to transmit environ-
mental information to others. Matson and Min [7]] introduced
Human-Agent-Robot-Machine-Sensor (HARMS) model for
interactions among heterogeneous actors. HARMS connects
actors over network by peer-to-peer manner and uses particular
message types such that all actors are indistinguishable in terms
of which type of actor (e.g., robot, software agent, or even
human) sends a message [J]].

In order to bring the such adaptation ability to autonomous
robots, we proposed an adaptive task-based model that keeps
checking its model with the given stimuli coming from the
environment [9]. When the stimuli change the model or sig-
nificantly affect to the model, proposed model investigates the
changes to check whether or not the system can continue the
given task. The model also utilizes the HARMS model to tell
other robots the changes that they observed. This enables the
robots to rapidly adapt to the new environment. The previous
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research, however, lacks information about principles of multi-
agent systems, which we believe is significantly important to
design the model. Therefore, this paper an extension of the
published research article focuses on justifying and clarifying

the research problem of the previous article.

2. Related Work

2.1 Modeling Multi-Agent Systems

Most recent active research studies of modeling multi-agent sys-
tems can be boiled down to agent-oriented paradigm (AOP) [ 10~
14]] and agent-oriented software engineering (AoSE) [15H17].
In both AOP and AoSE, software agents are modeled not only
for their properties and functionality, but also for interfaces and
message handling capabilities. This is a very different approach
from a classic object-oriented paradigm (OOP) because AOP
and AoSE focus more on relationships and interplays between
agents. Moreover, an agent model has a kind of reasoning ca-
pability to determine what to do, whereas an object just does it
for free [|17]].

The concept of holonic system has been proposed by Ro-
driguez et al. [[18] and implemented in a programming language,
called ‘SARL’ [14]]. The SARL is powered by Eclipse IDE and
is rooted in AOP. The SARL allows to design complex sys-
tems in which the robots may frequently deal with interactions,
concurrency, and distributions.

Similarly, the organization model for adaptive computational
systems (OMACS) model has been proposed by Deloach et
al. [4]. As the name implies the model considers potential
changes of the structure of the system in run-time, based on how
the agents perform their capabilities to play roles that satisty
the goals. The agents can be reassigned to new roles at run-time
when the result of the system analysis finds more efficient way
to fulfill the goals. This makes the system structure flexible.

JaCaMo [13]] is a programming platform of the framework
highlighting the three dimensions: organization, agent, and
environment. JaCaMo well reflects AOP and further extends
multi-agent oriented paradigm (MAOP). In contrast with the
holonic structure, JaCaMo framework supports indirect commu-
nication among the agents through artifacts in the environment
model.

The proposed model is very different from the aforemen-
tioned models in terms of strategy of how to react upon changes.
The aforementioned models are trying to adapt themselves to
the environment by changing structures and links of the current
organization, while the proposed model changes the system
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model by itself. Because a robot now can change what it can
do and what it cannot do, its capability also changes. However,
it is similar with the R-object model in that the R-object de-
fines what a robot should do and what the robot can do, named

platform independent function (PIF)’ and ‘platform dependent
function (PDF),” respectively.

2.2 Model Verification in Robotics

The model checking technique [19]] has been used to check
systems that require a system level verification due to its com-
plexity [20, [21]]. The model checking technique requires two
specifications: a system model and the system requirements.
The system model can be described using a finite state machine
(FSM). A FSM consists of states that represent status of the sys-
tem and transitions which describe what and how a transition is
made. System requirements are expressed in a linear temporal
logic (LTL). Because the system model is only composed of
logical states and transitions, model checking techniques check
only logical abnormality based on the system requirements (i.e.,
LTLs).

Although model checker requires massive computational re-
sources, many research studies utilized it for their systems. In
particular, the technique has been highlighted in the field of
robotics from about a decade ago because autonomous robots
become more complex and the capability of the robots for attain-
ment of goals should be verified in order to improve reliability
of the robots. Fainekos et al. [22] defined motions of a mo-
bile robot using LTL. Konur et al. [|23]] proposed a probabilistic
model checking for a swarm robots. Goppert et al. [24]] modeled
a flapping-wings micro air vehicle (FWMAV) using polyhedral
invariant hybrid automation (PIHA) to check if the vehicle
could accomplish the mission with unpredictable turbulence.
Kim et al. [25] proposed a training procedure of a humanoid
soccer robot and verified the procedure using a model checker,
which named ‘NuSMV’ [26].

3. Adaptive Goal-Based Model

Omicini et al. [11] described what are the components to model
multi-agent systems. In fact, because most multi-agent sys-
tems models are from AOP, they follow the three fundamentals:
agents, artifacts, and environments (or workspace). Here are
the short definitions of the fundamentals:

e Agents: to represent pro-active components of the sys-
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tems, encapsulating the autonomous execution of some

kind of activities inside some sort of environment

* Artifacts: to represent passive components of the sys-
tems such as resources and media that are intentionally
constructed, shared, manipulated and used by agents to
support their activities, either cooperatively or competi-
tively

» Workspaces: as conceptual containers of agents and arti-
facts, useful for defining the topology for the environment
and providing a way to define a notion of locality

Figure [I] shows a concept of the proposed model. The
goal-based agent interacts with the surrounded environment
as known as workspace by using the sensors. However, the
proposed model does not actively interact with artifacts. For
example, an ant consumes pray to prolong its life, but the model
does not consider the ‘consume’ behavior as an interaction. In-
stead, it is considered as a process that the energy of the pray
was transferred to the ant.

The following subsections will describe each component
of the model. We aim at a multi-robot environment in which
robots are the same in terms of its mission and functionality.
However, a goal is an atomic entity such that it cannot be shared
or combined with other goals.

3.1 Goal-Based Modeling

Goal-based model is one of widely used modeling techniques
in engineering [27-29]] and standardizes goals for robots. Goal-
based model consists of a set of sub-goals, which are the entities
to achieve the super goal. Behaviors of a robot are determined
based on what robot has to do at the moment to finish the
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Figure 1. A diagram of the proposed model.
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Figure 2. Examples of changes in the goal-based model. (a) An original model. (b) Add, (c) modify, and (d) remove a transition. (e) Add, (f)
modify, and (g) remove a state from the original model. For (g), transitions that were connected to the state are also removed.

current task that satisfies the given goal. Advantages of goal-
based model are 1) simple enough to design, 2) quantitatively
analyzable (i.e., its outcome can be measured), and 3) possible
to logically represent states. In particular, the advantage of
logical expression of states is useful to check validity of the
system.

A goal-based model is a tuple Robot = {S,T,I,—, AP},

where,
¢ S is a set of states;
¢ T is a set of transitions;
e I = sy € Sis an initial state;
e »C S x T x Sis atransition; and
e AP is a set of atomic propositions.

A state s; € S represents a goal. We assume that each state
is unique such that only transitions ¢, € {s; € S, s; €5,
s 5 sjli # j}, for 0 < k < number of transitions, are
considered. Let an infinite path fragment be m = Sg, 51, +.., Sn,
where n is infinite. Let a finite path fragment be T = sg, s1, ...,
Sm, Where m is finite. What the model checker is looking for is
a path fragment that explains whether a goal state is reachable
from the current state.

The set T is triggered in many ways of interactions with
environment: performing an action by the robot, performing
an action by other robots, or an environmental change. The
second way can be made by exchanging information among
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robots. AP is used to convert received message from other robot
into a corresponding trigger that makes a change in the model.
For example, a ground robot found that the end of the road is
closed by an obstacle while other ground robots are still driving
toward the end of the road. The ground robot that found the
obstacle sends a message to other ground robots in order to
let them know. And then, the message is translated based on
message sets defined in AP and triggers a transition in the other
ground robots such that they change to look for detour.

This component is a typical behavioral model that contains
all functions and reasoning process for a robot to perform tasks.
Before deployment of a robot, we assume that system model
and functions are working correctly. We do not consider how
well a robot performs goal reasoning because it is out of scope
of this research.

3.2 Adaptive Model Validation

In order for autonomous robots to address dynamic environ-
ment, their model has to be dynamically changeable. As shown
in Figure 2| states and transitions are subject to be changed in
goal-based model. Let robot be the goal model and let robot’
be the model after a change is made. There are three types
of operations to make a change in robot’: add, modify, and
remove. We are actually not interested in adding a state or
transition because add operation is likely to be less influential
than other operations in terms of attainment of the goals. This
does not mean that we do not need to check the system after
add operation is executed; we need to check to find a finite path
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fragment to keep satisfying system requirement. Followings are
processes for the rest four cases that we are interested in,

* Modify a state: A state is changed. However, transitions
with its predecessors and successors remain to make a
transition with the changed state. In this case, the robots
functionality is not changed but, purpose of the task is
changed.

* Remove a state: We assume current state at the moment
is not the same with the removing state. When the state
is removed, corresponding predecessors and successors
are also removed. The robot disables corresponding func-

tionality to the transitions that were removed.

* Modify a transition: Even though this change does not
much alter the model, the transition that represents robots
functionality is changed.

* Remove a transition: In this case, robot disables or loses
one capability. This change is critical because there is
a possibility that a finite path fragment from the current

state to the goal state does not exist.

As described in Section 2, model checking technique is a tool
that checks a system based on the given specification. Model
checker gives us not only result of satisfaction of the given
specification, but also tells us a counterexample if the result is
‘FALSE. In order to verify that robots can continue working
after a change is occurred, we need to define two specifications.
The two specifications say ‘can the robot accomplish current
task and go to the next task?’, ‘can the robot achieve the goal by
accomplishing corresponding tasks?’. The two specifications
are respectively expressed in LTL form as follows,

3(Scurrent) — )((scurrent+1) (1)

EI(Scurrent — EISgoal) (2)

NuSMV is one of Binary Decision Diagram (BDD)-based
symbolic model checkers. NuSMYV uses text-based description
of a model and analyzes it based on the given specification. It
produces a counterexample of the specification if the result is
‘FALSE. The counterexample can be utilized to analyze robots
status after robot senses a stimulus that changes the model.
Figure 3] shows an example of counterexamples from the case
where the model is changed from Figure [2(a) to[2(d). In this
example, the robot lost a capability so that it is no longer for it
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(a)
—— specification ( F states = s1 -> R states = s2> 1is false
—— as demonstrated by the following execution seguence
Trace Description: LIL Counterexample
Trace Type: Counterexample
=> State: 1.1 <-
states = s@
=> State: 1.2 <-
states = s
—— Loop starts here
—> State: 1.3 <-
states = s2
—-> State: 1.4 <~

(b)

— specification ( F states = s1 -> F states = s3> is false

— as demonstrated by the following execution seguence

race Description: LTL Counterexample

race Type: Counterexample

> State: 1.1 <-

states = s@

> State:
states = sl

— Loop starts here
> State: 1.3 <~
states = s2

> State: 1.4 <-

Figure 3. Counterexamples of the case where original model is
changed from Figure ga) to gd). (a) and (b) are counterexamples of
the specification (1) and (2), respectively.

to finish the current task and go to either next or goal task. In the
practical implementation, even though proposed model allows
a change of state, we focus only on changing transitions due to
the fact that modifying a state could change entire model (e.g.,
remove corresponding transitions) that results in invalidation
of the model or the model is no longer valid to accomplish the
given goal. In addition, we assume that a transition that does
not exist in an original model at design phase cannot be added.
We will address this assumption when we consider capability
changeable robot, which adds H/W or S/W type capability in

run-time to expend its functionality [30].

3.3 Dynamic Message Exchanging

The proposed model accepts messages from other robots in
the same workspace to apply any changes to the model. The
HARMS model is a tool that provides organizational communi-
cations and interactions between agents. The HARMS model
utilizes network-based communication, such which agents ex-
change information through sending messages over a network.
The messages are purpose-specific and some message types
require feedback from the receiver. For example, when agent A
sends a message to command agent B, agent B will reply with a
message to agent A.

HARMS model provides three fundamental message types
(i.e., Notification, Query, and Command) to allow robots to ex-
change information using the messages types. We use notifica-
tion-type message with multi-cast transmission in order to send
a message to nearby neighbor robots. The message parser in
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Table 1. An example of AP sub-sets and corresponding Human-Agent-Robot-Machine-Sensor (HARMS) messages

AP:{SO,Sl,SQ,IO,Il,IQ}

HARMS message

APyqa={s1.t1.t2}
APmod={Sl ;tQ}
AP?"em={sl }

“Either Action 1 or Action 2 can accomplish Goal 17
“Goal 1 can be accomplished by only Action 2”

“Goal 1 cannot be accomplished by any actions”

the model translates received message to corresponding AP in
the goal-based model. Table [I|shows an example of look-up
table for the example illustrated in Figure[2]

4. Conclusion

Autonomous robots in dynamic environment should be able to
continue their mission to maintain reliability of the system. Be-
cause unwanted changes from the environment may disrupt the
robots while working, the robots have to detect and handle such
changes. The proposed model is an enhanced model from the
classic goal-based model, which uses HARMS and the model
checker in order to detect and handle the changes. The most
significant advantage of using the proposed model is automated
run-time validation.

As mentioned in Section 2, attempts of applying model check-
ing technique to the field of robotics are very active in the
fields [[22H25] |31} |32]]. However, the model checking tools that
were used in the studies vary and run standalone. This means
that it is difficult to merge it with the simulation tools for multi-
agent systems such as robot operating system (ROS) [33]] and
Netlogo [34].

The proposed model can fully demonstrate its capability in
scenarios where autonomous robots have limited information
to proceed their mission. As an example of applications, Zhong
and DeLoach proposed a goal-based robot system [35]] that has
a capability to reorganize the robots themselves. In the scenario
the robots have roles assigned based on their capability to the
role and make an organization for the mission. When some of
the robots stopped working, implying an environmental change
to other robots, the remaining robots start reorganizing by re-
assigning new roles to the remainders for the mission. This
approach works only if there is a robot that can substitutes the
stopped one, which means that the substituted robot has the
capability to take the role from the stopped robot. Because the
proposed model tries to find an alternative for robot to continue
proceeding the goal, rather than being stopped, applying model
checking technique to such scenario provides more reliability
and flexibility to accomplish mission.
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This research study is actively on progress through the pub-
lished work and this extension. Our next work would be to
simplify the existing model checker to make the checker embed
into one of the simulation tools. In order to validate our work,
we will try to apply the model checker to Netlogo, especially
into the ant model built by Wilensky [36]. The ant model is the
most simple and appropriate environment to prove concept of

the proposed model.
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