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Abstract

In this paper, we discuss a gait representation based on the width of silhouette in terms of
discriminative power and robustness against the noise in silhouette image for gait recognition.
Its sensitivity to the noise in silhouette image are rigorously analyzed using probabilistic noisy
silhouette model. In addition, we develop a gait recognition system using width representation
and identify subjects using the decision level fusion based on majority voting. Experiments on
CASIA gait dataset A and the SOTON gait database demonstrate the recognition performance
with respect to the noise level added to the silhouette image.
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1. Introduction

Human identification systems utilizing biometrics have been implemented in many applications
which require a high level of security, for example, visual surveillance, access control at
airports, banks, and etc. [1]. There are various biometric features for human identification.
Some examples include face, iris, fingerprint, and palmprint. Particularly, gait recognition
system has attracted increasing interest since it has unique advantages over other biometrics
[2]. For example, it is not intrusive and may be acquired at a distance. Also, it can be captured
at low resolution. Gaits can thus be used in situations when other biometrics might not be
applicable.

Gait analysis can mainly be classified under two major approaches: model-based approach
and model-free approach [2]. The model-based approach adopts a human model and maps
those extracted image features onto the components of the human model. Unfortunately, the
model-based approaches require high quality gait sequences and high computational cost to
recover human parameters and obtain good performance. Further, the approaches are limited
by the imperfect computer vision techniques available for human modeling as well as the high
computational cost incurred. Johnson and Bobick [3] proposed a multi-view gait recognition
method using recovered static body parameters such as the height, the distance between head
and pelvis, and the distance between the feet, which are measurements taken from static gait
frames. Lee and Grimson [4] described a moment-based representation of gait appearance for
the purpose of person identification. The silhouette of a walking person was divided into seven
regions. Ellipses were fit to each region and region feature vector were formed, including
averages of the centroid and the aspect ratio, etc. In [5], a more detailed model was proposed
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using ellipse for the torso and the head, line segments for the
legs, and a rectangle for each foot.

In contrast, the model-free approaches act directly on a video
sequence and characterize the walking pattern by signal analy-
sis. Unlike the model-based approach, the model-free approach
does not assume any specific human model, thereby saving
the computational resources. Thus, model free approaches are
considered further in this paper. Han and Bhanu [6] proposed a
model-free gait representation, called gait energy image (GEI),
and derived real and synthetic templates for gait. Fusion of
synthetic and real templates was used to obtain the final recog-
nition results. And Yang et al. [7] obtained the dynamic region
in GEI which reflects the walking manner of an individual,
called enhanced GEI. Li et al. [8] separate a silhouette into
seven components, and perform human gait recognition first
based on each of the seven components individually and on
certain combinations of the seven components. Wang et al. [9]
used the outer contour directly instead of the whole silhouette
and unwrapped it into a distance signal to recognize a person.
Kale et al. [10, 11] proposed a gait representation called the
width vector. The width of the outer contour of a silhouette
image is used as a gait feature in their works. Hong et al. [12]
proposed multiple gait representation, called multi-bipolarized
contour vector, inspired by Kale et al. [10] and combined them
to identify walking person. Otherwise Liu et al. [13] used the
horizontal and vertical projections of silhouettes as a gait repre-
sentation and Hong et al. [14] presented a kind of the projection
presentation, called the mass vector. Lam et al. [15] proposed
gait flow image (GFI) generated by using an optical flow field
without constructing any model.

In this paper, a theoretical analysis is conducted regarding the
noise sensitivity of the width gait representation. Especially, the
expectation of the width vector for silhouette noise is rigorously
derived based on a probabilistic noise model and experimentally
verified through simulation. Furthermore, we present a gait
recognition system to divide a given gait sequence into complete
gait cycles using the norm of the width vectors. The CASIA gait
dataset A and the SOTON gait database are used to evaluate the
recognition performance with respect to the noise level added
to the silhouette image.

The rest of the paper is organized as follows. Section 2
describes the width vector, which is gait representation based
on the width of the outer contour of a silhouette image. Section
3 presents a probabilistic noise model in a silhouette image
and analyzes the sensitivity of the width vector with respect to
silhouette noise. Section 4 presents a gait recognition system

for human identification. Section 5 reports the experimental
results on two gait databases. Finally, conclusions are drawn in
Section 6.

2. Gait Representation

Individual walking pattern varies in terms of period, width,
and distribution due to the diversity of the geometrical con-
figurations of different individuals. Kale et al. [10, 11] used
the width of the outer contour of a silhouette image as a gait
feature in their work where the feature is called as the width
vector. The width vector is defined as the difference between
the x-coordinate values of the leftmost nonzero pixel and the
rightmost nonzero pixel in row of a silhouette image. Thus, for
a given W ×H sized silhouette image, the width vector can be
written mathematically as

w(t) = [w1(t), w2(t), ..., wH(t)] ∈ RH , (1)

where wh(t) = xRh (t) − xLh (t) ≥ 0, for ∀h = 1, 2, ..., H is
the difference in location of the rightmost boundary pixel xRh (t)

and the leftmost boundary pixel xLh (t) for a given row h in the
tth frame.

Instead of using the width vector directly as in [10], the
arithmetic mean of the width is employed as a feature vector
to save the high cost of the frame-by-frame matching such as
dynamic time wrapping (DTW). Explicitly, we calculate the
mean of width vectors as

w̄ =
1

T

T∑
t=1

w(t) ∈ RH , (2)

with T being the number of frames in a gait sequence. The
samples of the normalized silhouette images in a gait sequence
for a single person and their corresponding width vectors are
shown in Figure 1(a) and 1(b). The rightmost image in Figure
1(b) is the mean of width vectors w̄ for a given sequence. As
shown in Figure 1, the width vector seems sensitive to structural
differences and might be vulnerable to spurious pixels in a
silhouette image.

3. Sensitivity Analysis

3.1 Noise in Silhouette Image

Let us denote an ideal noise-free silhouette image by Ixy(t),
an actual binary silhouette image and added noise by Nxy(t)

and ηxy(t), respectively. Then, the actual silhouette Nxy(t) is
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(a)

(b)

Figure 1. (a) Examples of normalized silhouette images in a gait
sequence for a single person (b) the corresponding width vectorsw(t).
The rightmost images in (b) is the mean of width vectors w̄.

represented as

Nxy(t) = Ixy(t) + ηxy(t). (3)

For simplicity, it is assumed that the added noise Nxy(t) be
is identically and independently distributed (i.i.d.) and has the
following distribution [16]:

ηxy(t) =



η1xy(t) : P(ηxy(t) = −1) = ε,

P(ηxy(t) = 0) = 1− ε, if Ixy(t) = 1

η0xy(t) : P(ηxy(t) = 1) = ε,

P(ηxy(t) = 0) = 1− ε, if Ixy(t) = 0

.

(4)
Then, we obtain

E[ηxy(t)] =

{
−ε, if Ixy(t) = 1

ε, if Ixy(t) = 0
, (5)

and

V ar[ηxy(t)] = V ar[η1xy(t)] = V ar[η0xy(t)] = ε(1− ε). (6)

3.2 A Noise Model for Width Representation

For width representation, only the leftmost and the rightmost
pixels are needed. If there exist spurious pixels according
to Eq. (4) in the background region, the leftmost pixel and
rightmost pixel will be changed. According to the definition
of width representation, the width vector will also be changed.
If there exist salt-noise pixels in the background region with
a lower x-coordinate value than that of the leftmost pixel, the
width vector will be increased. Even when there is no salt-
noise pixel in the background region, a width vector can still
be decreased due to the consecutive pepper-noise pixels in a

silhouette image. Let x̂Rh (t) and x̂Lh(t) denote the x-coordinate
values of the rightmost non-zero pixel and the leftmost non-
zero pixel generated by influence of noises in the background
and foreground, respectively and λRh (t) and λLh(t) denote the
left-side noise and the right-side noise, Then, the hth element
of the width vector ŵ(t) with noise at time t is denoted as

ŵh(t) = x̂Rh (t)− x̂Lh(t)

=
(
xRh (t) + λRh (t)

)
−
(
xLh(t) + λLh(t)

)
=

(
xRh (t)− xLh(t)

)
+ λh(t)

= wh(t) + λh(t).

(7)

Here, λh(t) = λRh (t)−λLh(t) is the total noise for a given row h.
The expectation of noise in width representation is evaluated

by observing the sequence of pixels for a given row h. The
addition of noise ηxy(t) to an original silhouette image Ixy(t) is
considered and its distribution satisfies Eq. (4). The random
variable x̂Lh(t) that interests us is x-coordinate value of the first

non-zero pixel. For simplicity, x̂Lh(t) assume the values 1, 2, ...,
W/2 and we want to determine the corresponding probabilities.

First, we consider the probability that the pixel kL within
the interval

[
1,xLh(t)

]
is the leftmost pixel x̂Lh(t) due to noise

for a given row h. This means that the noisy leftmost pixel
is out of the silhouette region. Since only the leftmost pixel
is considered in width representation, all other pixels within
the interval

(
kL,x

L
h(t)
]

can be ignored. The first kL − 1 pixels
should not be a noise pixel so that that kLth pixel is the leftmost
pixel for a given row h. Hence, the probability that the noisy
leftmost pixel is the kLth pixel is given by:

P(x̂Lh(t) = kL) = (1− ε)kL−1ε, 1 ≤ kL ≤ xLh(t) (8)

and the left-side noise in width representation is given by:

λLh(t) = kL − xLh(t). (9)

Next, we consider the probability that the pixel kL within the
interval

(
xLh(t), W2

]
is the leftmost pixel x̂Lh(t) due to noise for a

given row h. This means that the noisy leftmost pixel is within
the inner region of the silhouette. There is no salt noise pixel
within the background region and consecutive pepper-noise
pixels in inner region of silhouette from borderline between
background and silhouette region. Hence, it has the probability

P(x̂Lh(t) = kL) = (1− ε)x
L
h(t)−1εkL−xL

h(t)+1,xLh(t) < kL ≤
W

2
(10)

and the left-side noise in width representation is given by:
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λLh(t) = kL − xLh(t) + 1. (11)

The noise in terms of the leftmost pixel can thus be summarized
as:

P(x̂Lh(t) = kL)

=

{
(1− ε)kL−1ε, 1 ≤ kL ≤ xLh(t),

(1− ε)xL
h(t)−1εkL−xL

h(t)+1, xLh(t) < kL ≤ W
2 ,

(12)

λLh(t) =

{
kL − xLh(t), 1 ≤ kL ≤ xLh(t),

kL − xLh(t) + 1, xLh(t) < kL ≤ W
2 .

(13)

Similarly, the noise in terms of the rightmost pixel can be
formulated as:

P(x̂Rh (t) = kR)

=

{
(1− ε)W−xR

h (t)εx
R
h (t)−kR+1, W

2 < kR < xRh (t),

(1− ε)W−kRε, xRh (t) ≤ kR ≤W,

(14)

λRh (t) =

{
kR − xRh (t)− 1, W

2 < kR < xRh (t),

kR − xRh (t), xRh (t) ≤ kR ≤W.
(15)

Consequently, the noise in width vector is defined as:

λh(t) = λRh (t)− λLh(t) (16)

and

E [λh(t)] =

W∑
kR=W/2+1

P(x̂Rh (t) = kR)λRh (t)

−
W/2∑
kL=1

P(x̂Lh(t) = kL)λLh(t)

=

xR
h (t)−1∑

kr=W/2+1

(
(1− ε)W−xR

h (t)εx
R
h (t)−kR+1

× (kR − xRh (t)− 1)
)

+

W∑
kR=xR

h (t)

(1− ε)W−kRε(kR − xRh (t))

−
xL
h(t)∑

kL=1

(1− ε)kL−1ε(kL − xLh(t))

−
W/2∑

kL=xL
h(t)+1

(
(1− ε)x

L
h(t)−1εkL−xL

h(t)+1

× (kL − xLh(t) + 1)
)
.

(17)

Figure 2. The expectation of noise in width representation in terms
of the probability of noise within a silhouette image.

Here, the first and the fourth terms in Eq. (17) are small negative
values and approach zero as the leftmost and rightmost pixels
approach the x-coordinate center W/2.

Figure 2 shows the expectation of noise for width representa-
tions in terms of the probability within a silhouette image when
the width of a normalized silhouette image is assumed to be
120. As shown in Figure 2, when the original value of the width
vector extracted from individual silhouette without noise de-
creases, the expectation of noise increases exponentially. This
means that the upper portion of body which can have small
values of the width vector such as face, neck, and torso can be
very sensitive to noise in a silhouette image. Figure 3 shows
the example of the width vector contaminated with noise.

4. Gait Recognition

At the start, we parse a given binary gait sequence into gait
cycles such that each cycle corresponds to one complete cycle
from rest position to foot-forward-to-rest position. Figure 4
shows the norm of the width vector as a function of time for a
given gait sequence. From its periodic characteristics, we can
obtain M keyframe indices, which are valleys or local minima
corresponding to the rest position. We then extract the width
vectors from each M − 1 complete gait cycle and generate the
mean of width vectors for classification.

The classification process is carried out via a simple classi-
fication method, namely, the nearest neighbor (NN) classifier.
Euclidean distance is used for similarity measurement to re-
solve the matching problem. The mean of width vectors w(m)
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Figure 3. An example of noise contamination in width representation.

Figure 4. The norm of the width vector as a function of time.

obtained from the mth complete gait cycle is classified as class
ID(m) from minimizing the similarity measure given by:

ID(m) = arg min
i
E(w̄(m), w̄

n
c )

for ∀n = 1,2, ...,Nc and ∀c = 1,2, ...,C,
(18)

where E(•) is the Euclidean distance and Nc is the number
of means of width vectors in class c. At last, majority voting

Figure 5. Procedure of the proposed gait recognition system based
on decision fusion.

is used to obtain the final decision for a gait sequence. The
proposed gait recognition system is shown in Figure 5.

5. Experiments

In this paper, two gait databases available in public domain
are used to evaluate the recognition performance. The first
database is the CASIA gait dataset A which is also known
as the NLPR gait database [9] and the other database is the
SOTON gait database [16]. The CASIA gait dataset A consists
of 20 subjects and involves four sequences obtained from three
different viewing cameras per subject, leading to a total of
80 sequences per view. In our experiment, we consider only
canonical view. For a better statistical observation, we employ
a larger SOTON database. This database contains over 100
subjects; thereby it is also referred to as the large-subject gait
database. The SOTON gait database includes 113 different
subjects with 4 sequences per subject where the images are
captured at one canonical view.

In preprocessing, a binary foreground image involving human
movements should extracted from an original visual image
captured from a camera. Since both the CASIA gait database
A and the SOTON database provide foreground images, any
additional background subtraction technique is not required.
Next, the silhouette normalization technique from [12] is used
to reduce the effect of changes in silhouette size in walking. All
silhouette images are normalized into 120× 150 sizes.

The leave-one-out cross-validation test will be applied to
the small-subject CASIA gait dataset A and the 4-fold cross-
validation test will be used for the large-subject SOTON gait
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Table 1. Correct classification rates (CCR) and false acceptance rates
(FAR)

Database CCR FAR

CASIA A 0.7125 0.0151

SOTON 0.8053 0.0017

database to evaluate the recognition performance. Table 1 lists
the correct classification rate (CCR) and the false acceptance
rate (FAR) for the CASIA gait dataset A and the SOTON gait
database when width representation has no noise, i.e., ε = 0.

Next, in order to illustrate the impact of noise to the recog-
nition performance, the experiments are repeated while the
probability of noise in Eq. (6) is increased from 0 to 0.02. Fig-
ures 6 and 7 shows the CCRs and FARs with respect to the noise
level added to the silhouette image for the CASIA gait dataset
A and the SOTON gait database, respectively. As we expected,
the performances of gait recognition using width representation
start to degrade and are much affected by even a low level noise.
Thus, it can be concluded that width representation is sensitive
against the noise in silhouette image. Tables 2 and 3 summarize
respectively the CCRs and FARs on the two gait database with
respect to the noise level added to the silhouette image.

6. Conclusion

In this paper, gait representation based on the width of silhou-
ette image is analyzed in terms of robustness against the noise
in silhouette image. The expectation of the width vector for
noises in silhouette image is mathematically derived based on a
probabilistic noise model and experimentally verified through
simulation. Besides, we presents a gait recognition system
to divide a gait sequence into complete gait cycles using the
periodic characteristics of width representation. Both the small-
subject CASIA gait dataset A and the large-subject SOTON gait
database are used to evaluate the recognition performance with
respect to the noise level added to the silhouette image. From
the results, width representation has been much affected by
even a low level noise. For future works, we analyze sensitivity
of projection gait representation and improve the recognition
performance.
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