DOI QR코드

DOI QR Code

Effects of Ti on High Temperature Oxidation of Ni-Based Superalloys

Ni 기지 초내열합금의 고온산화 저항성에 미치는 Ti의 영향

  • Park, Si-Jun (Muli-Material Research Center, Gwangju-Jeonnam Division, Korea Automotive Technology Institute) ;
  • Seo, Seong-Moon (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Yoo, Young-Soo (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Jeong, Hi-Won (High Temperature Materials Group, Korea Institute of Materials Science) ;
  • Jang, HeeJin (Department of Materials Science and Engineering, Chosun University)
  • 박시준 (자동차부품연구원 광주전남본부 소재융합연구센터) ;
  • 서성문 (재료연구소 내열재료그룹) ;
  • 유영수 (재료연구소 내열재료그룹) ;
  • 정희원 (재료연구소 내열재료그룹) ;
  • 장희진 (조선대학교 재료공학과)
  • Received : 2016.04.17
  • Accepted : 2016.05.25
  • Published : 2016.06.30

Abstract

The effects of Ti on the high temperature oxidation of Ni-based superalloys were investigated by cyclic oxidation at $850^{\circ}C$ and $1000^{\circ}C$. The oxide scale formed at $850^{\circ}C$ consists of $Cr_2O_3$, $Al_2O_3$, and $NiCr_2O_4$ layers, while a continuous $Al_2O_3$ layer was formed at $1000^{\circ}C$. The oxidation rate of the alloy with higher Ti content was higher than the alloy with less Ti content at $850^{\circ}C$, possibly due to the increase in the metal vacancy concentration in the $Cr_2O_3$ layer involved by incorporation of $Ti^{4+}$. However, Ti improved the oxidation resistance of the superalloy at $1000^{\circ}C$ by reducing oxygen vacancy concentration in $Al_2O_3$ layer.

Keywords

References

  1. Z. Dong, X. Peng, Y. Guan, L. Li, F. Wang, Corros. Sci., 62, 147 (2012). https://doi.org/10.1016/j.corsci.2012.05.010
  2. D. J. Young, J. Zurek, L. Singheiser, W. J. Quadakkers, Corros. Sci., 53, 2131 (2011). https://doi.org/10.1016/j.corsci.2011.02.031
  3. Z. Yang, G. G. Xia, J. W. Stevenson, J. Power Sources., 160, 1104 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.099
  4. M. P. Taylor, H. E. Evans, S. Stekovic, M. C. Hardy, Microscopy of oxidation 8 (ed. G. J. Tatlock and H. E. Evans) p. 240, Liverpool, Science Reviews 2000 Ltd. (2011).
  5. J. Chen, P. Rogers, J. A. Little, Oxid. Met., 47, 381 (1997). https://doi.org/10.1007/BF02134783
  6. F. A. Khalid, S. E. Benjamin, Oxid. Met., 54, 63 (2000). https://doi.org/10.1023/A:1004698528721
  7. D. Kim, C. Jang, W. Ryu, Oxid. Met., 71, 271 (2009) https://doi.org/10.1007/s11085-009-9142-5
  8. A. Encinas-Oropesa, N. J. Simms, J. R. Nicholls, G. L. Drew, J. Leggett, M. C. Hardy, High Temp., 26, 241 (2009). https://doi.org/10.3184/096034009X465202
  9. M. P. Taylor, H. E. Evans, S. Stekovic, M. C. Hardy, High Temp., 29, 145 (2012). https://doi.org/10.3184/096034012X13341417107382
  10. K. Y. Kim, J. Corros. Sci. Soc. of Kor., 27, 289 (1998).
  11. C. T. Sims, W. C. Hagel, Superalloys, Wiley, New York (1972).
  12. G. R. Wallwork, Rep. Prog. Phys., 39, 401 (1976). https://doi.org/10.1088/0034-4885/39/5/001
  13. S.W. Yang, Oxid. Met., 15, 375 (1981). https://doi.org/10.1007/BF00603531
  14. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, UK (2008).
  15. C. Wagner, Z. Phys. Chem., B21, 25 (1933).
  16. G. Tammann, Z. Anorg. Allg. Chem., 111, 78 (1920). https://doi.org/10.1002/zaac.19201110107
  17. S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong, H. J. Jang, J. Nanomater., article ID 929546 (2015).
  18. S. J. Park, Ms. Thesis, Chosun University (2015).
  19. M. J. Donachie, S. J. Donachie, Superalloys: A Technical Guide, 2nd ed. p. 287-322, ASM International (2002).
  20. D. Caplan, M. Cohen, J. Electrochem. Soc., 108, 438 (1961). https://doi.org/10.1149/1.2428106
  21. C. S. Tedmon, J. Electrochem. Soc., 113, 766 (1966). https://doi.org/10.1149/1.2424115
  22. S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong, H. J. Jang, Corros. Sci., 90, 305 (2015). https://doi.org/10.1016/j.corsci.2014.10.025
  23. M. P. Brady, W. J. Brindley, J. L. Smialek, I. E. Locci, JOM, 48, 46 (1996).
  24. I. C. I. Okafor, R. G. Reddy, JOM, 51, 35 (1999).
  25. H. Xiaoxiao, L. Jinshan, H. Rui, B. Guanghai, F. Hengzhi, Rare Metal Mat. Eng., 39, 1908 (2010). https://doi.org/10.1016/S1875-5372(10)60136-1
  26. A. Ul-Hamid, A. I. Mohammed, S. S. Al-Jaroudi, H. M. Tawancy, N. M. Abbas, Mater. Charact., 58, 13 (2007). https://doi.org/10.1016/j.matchar.2006.03.005
  27. J. H. Park, K. Natesan, Oxid. Met., 33, 31 (1990). https://doi.org/10.1007/BF00665668
  28. C. S. Cheng, H. Gomi, H. Sakata, Phys. Status Solidi A, 155, 417 (1996). https://doi.org/10.1002/pssa.2211550215
  29. H. Guo, D. Wang, H. Peng, S. Gong, H. Xu, Corros. Sci., 78, 369 (2014). https://doi.org/10.1016/j.corsci.2013.10.021
  30. H. Guo, T. Zhang, S. Wang, S. Gong, Corros, Sci., 53, 2228 (2011). https://doi.org/10.1016/j.corsci.2011.03.003
  31. S. Pizza, G. LO Biundo, M. C. Romano, C. Sunseri, F. Di Quarto, Corros. Sci., 40, 1087 (1998). https://doi.org/10.1016/S0010-938X(98)00009-2
  32. M. A. Pech-Canul, M. I. Pech-Canul, P. Bartolo-Peraz, M. Echeverria, Electrochim. Acta, 140, 258 (2014). https://doi.org/10.1016/j.electacta.2014.05.034

Cited by

  1. Statistics of oxidation resistance of Ni–(0–15)Co–(8–15)Cr–(0–5)Mo–(0–10)W–(3–8)Al–(0–5)Ti–(0–10)Ta–0.1C–0.01B superalloys at 1000 °C by compositional variations pp.1867-7185, 2020, https://doi.org/10.1007/s12598-018-1063-5