DOI QR코드

DOI QR Code

Development of a real-time surface image velocimeter using an android smartphone

스마트폰을 이용한 실시간 표면영상유속계 개발

  • 류권규 (동의대학교 공과대학 토목공학과) ;
  • 황정근 (동의대학교 공과대학 토목공학과)
  • Received : 2016.02.22
  • Accepted : 2016.03.21
  • Published : 2016.06.30

Abstract

The present study aims to develop a real-time surface image velocimeter (SIV) using an Android smartphone. It can measure river surface velocity by using its built-in sensors and processors. At first the SIV system figures out the location of the site using the GPS of the phone. It also measures the angles (pitch and roll) of the device by using its orientation sensors to determine the coordinate transform from the real world coordinates to image coordinates. The only parameter to be entered is the height of the phone from the water surface. After setting, the camera of the phone takes a series of images. With the help of OpenCV, and open source computer vision library, we split the frames of the video and analyzed the image frames to get the water surface velocity field. The image processing algorithm, similar to the traditional STIV (Spatio-Temporal Image Velocimeter), was based on a correlation analysis of spatio-temporal images. The SIV system can measure instantaneous velocity field (1 second averaged velocity field) once every 11 seconds. Averaging this instantaneous velocity measurement for sufficient amount of time, we can get an average velocity field. A series of tests performed in an experimental flume showed that the measurement system developed was greatly effective and convenient. The measured results by the system showed a maximum error of 13.9 % and average error less than 10 %, when we compared with the measurements by a traditional propeller velocimeter.

본 연구는 안드로이드 기반의 스마트폰을 이용한 실시간 표면영상유속계를 개발하는 것이다. 스마트폰이 내장한 카메라, GPS, 방향 센서, CPU를 활용하여, 실시간으로 현장에서 하천의 표면유속을 측정하는 것이다. 먼저, 스마트폰의 GPS를 이용하여 측정 현장의 위치를 파악하고, 경사계(방향 센서)를 활용하여 카메라와 촬영면의 기하적인 관계를 설정한다. 이 때 입력해야 할 유일한 변수는 수면과 카메라의 연직 높이뿐이다. 내장된 카메라로 정해진 시간만큼 동영상을 촬영한다. 촬영된 동영상을 개방 소스의 영상처리 라이브러리인 OpenCV를 이용하여 프레임별로 분할하고, 이를 시공간 영상 분석하여 하천 표면의 2차원 유속장을 추정한다. 시판되는 안드로이드 스마트폰에 적용하여 현장 시험한 결과 약 11초에 1회의 순간유속 측정 (1초간의 평균유속 측정)을 할 수 있어, 현장에서 즉각적으로 하천 수표면의 표면유속을 측정할 수 있었다. 또한 이 순간유속을 수십회 반복한 뒤 평균하여 시간평균유속을 구할 수 있었다. 개발된 시스템을 실험 수로에서 시험한 결과, 측정이 매우 효과적이며 편리하였다. 측정된 결과를 프로펠러 유속계에 의한 측정값과 비교한 결과, 최대 오차 13.9%, 평균적으로 10 % 이내의 오차로 실험 수로의 표면 유속을 측정할 수 있었다.

Keywords

References

  1. Aya, S., Fujita, I. and Yagyu, M. (1995). "Field-observation of flood in a river by video image analysis", Proc. of Hydraulic Engineering, JSCE, Vol.39, pp.447-452. (in Japanese) https://doi.org/10.2208/prohe.39.447
  2. Bigun, J. (2006). Vision with Direction, a Systematic Introduction to Image Processing and Computer Vision, Springer.
  3. Dramais, G., Coz, J.L., Camenen, B., and Hauet, A. (2011). "Advantages of a mobile LSPIV method for measuring flood discharges and improving stage discharge curves", J. of Hydro-environmental Research, Vol.5, No.4, pp.301-312. https://doi.org/10.1016/j.jher.2010.12.005
  4. Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis, A Wiley Interscience Publication.
  5. Etoh, G., Takehara, K., Takano, Y., Fujita, I., Sakai, N., Aya, S., Tamai, M., Miyamoto, H., and Muto, Y. (2002). "Infrared particle tracking velocimetry for applications to measurements of surface velocity fields of rivers." J. of River Technology, Vol. 8, pp. 465-470. (in Japanese)
  6. Ettema, R., Fujita, I., Muste, M., and Kruger, A. (1997). "Particle-image velocimetry for whole-field measurement of ice velocities." Cold Regions Science and Technology, Vol. 26, pp. 97-112. https://doi.org/10.1016/S0165-232X(97)00011-6
  7. Fujita, I. (2013). "Utilization of far-infrared-ray camera for image-based measurement of river flow and discharge", Nagare, Vol.32, pp.347-352. (in Japanese)
  8. Fujita, I., Ando, T., Tsutsumi. S., and Okabe, T. (2009). "Flood flow measurements using STIV in worse imaging conditions", Annual Journal of Hydraulic Engineering, JSCE, Vol.53, pp.1003-1008.(in Japanese)
  9. Fujita, I. and Komura, S. (1994). "Application of video image analysis for measurements of river-surface flows", Annual Journal of Hydraulic Engineering, JSCE, Vol.38, pp.733-738. (in Japanese) https://doi.org/10.2208/prohe.38.733
  10. Fujita, I., Kosaka, Y., Yorozuya, A. and Motonaga, Y. (2013). "Surface flow measurement of snow melt flood by using a far infrared camera", J. of JSCE, B1 (Water Resources Engineering), Vol.69, No.4, pp.I_703-I_708. (in Japanese)
  11. Fujita, I., Takehara, K., Aya, S., Sakai, N., Tamai, M., Takano, Y. and Miyamoto, H. (2002). "Measurement of river flow by ITV video camera", Annual Journal of Hydraulic Engineering, JSCE, Vol.8, pp.459-464. (in Japanese)
  12. Fujita, I., and Tsubaki, R. (2002). "A novel free-surface velocity measurement method using spatio-temporal images." Proc. of Hydraulic Measurements and Experimental Methods, ASCE, on CDROM.
  13. Fujita, I., Watanabe, H., and Tsubaki, R. (2005). "Efficient image analysis method for river flow measurement using space-time images." Proc. of XXXI IAHR Congress, pp. 422-428.
  14. Ishikawa, T., Osumi, K. and Mitome, H. (2001). "Water flow discharge measurement using optical flow technique", Proc. of the Techniques and Research, Hokuriku Regional Development Bureau, pp.249-252. (in Japanese)
  15. Jahne, B. (1993). Spatio-Temporal Image Processing, Springer, pp. 150-152.
  16. Kim, Y., Yang, S., Yu, K., and Kim, D.S. (2014) "Flood Runoff Calculation using Disaster Monitoring CCTV System", J. of Environmental Science International, Vol.23, No.4, pp.571-584. (in Korean) https://doi.org/10.5322/JESI.2014.4.571
  17. Kim, S., Yu, K. and Yoon, B. (2010) "Development of a Velocity Measurement Method at Night Time using an Infrared Camera", Proc. of KWRA Annual Conference, pp.478-482. (in Korean)
  18. Kim, S., Yu, K. and Yoon, B., (2011). "Real-time discharge measurement of the river using fixed-type surface image velocimetry." J. of Korea Water Resources Association, Vol. 44, pp. 377-388. (in Korean) https://doi.org/10.3741/JKWRA.2011.44.5.377
  19. Kinoshita, R. (1967). "An analysis of the movement of flood waters by aerial photography concerning characteristics of turbulence and surface flow," J. of the Japan Society of Photogrammetry, Vol.6, No.1, pp.1-17. (in Japanese) https://doi.org/10.4287/jsprs1962.6.1
  20. Korean Water Resources Association (2009) Design Standard of River Works. (in Korean)
  21. K-Water (1994). Development of Measurement Facilities for Stream Discharge (Development of a Microwave Surface Velocity Meter and Supersonic Correlation Current Meter), WRRI-WR-94-1. (in Korean)
  22. K-Water (2010). Improvement of Accuracy on Discharge Measurement Using Surface Velocity, KWI-WR-10-01. (in Korean)
  23. Negishi, D., Nihei, Y., Katayama, N. and Kashiwada, J. (2014) "Accuracy of velocity and discharge measurement by using radio current meter", J. of Japan Society of Civil Engineers, B1(Water Resource Engineering), Vol.70, No.4, pp.I_625-I_630. (in Japanese) https://doi.org/10.2208/jscejhe.70.I_625
  24. Pratt, W. K. (2007) Digital Image Processing, 4th ed., Wiley-Interscience.
  25. Raffel, M., Willert, C.E., Wereley, S.T., and Kompenhans, J. (2007). Particle Image Velocimetry, a Practical Guide, 2nd ed., Springer.
  26. Roh, Y.S. (2005). Development of River Discharge Measurement Technique using Image Analysis, Ph.D. thesis, Myongji University. (in Korean)
  27. Tsubaki, R., Fujita, I., Yu, K. and Muste, M. (2015) "Large-scale particle image velocimetry (LSPIV) implementation on smartphone", Proc. of 36th IAHR Congress, Delft, The Hague, the Netherlands.
  28. Yamaguchi, T., and Niizato, K. (1994). "Flood discharge observation using radio current meter." J. of Japan Society of Civil Engineers, No. 497/II-28, pp. 41-50. (in Japanese)
  29. Yu, K. and Cho, W.S. (2014). Real-time surface image velocimeter using a smartphone, Proc. of 19th IAHR-APD Congress, pp.210-211.
  30. Yu, K., Kim, S., and Yoon, B. (2014). "Measurement of two-dimensional velocity distribution of spatio- temporal image velocimeter using cross-correlation analysis." J. of Korea Water Resources Association, Vol. 47, No. 6, pp. 537-546. (in Korean) https://doi.org/10.3741/JKWRA.2014.47.6.537
  31. Yu, K., Kim, S., and Kim, D. (2015a) "Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition", J. of Hydrology, Vol. 529, pp.1810-1822. https://doi.org/10.1016/j.jhydrol.2015.08.005
  32. Yu, K., Kim, S., Yoo, B., and Bae, I. (2015b) "A test of a far infrared camera for development of new surface image velocimeter for day and night measurement", J. of Korea Water Resources Association, Vol. 48, No. 8, pp. 659-672. (in Korean) https://doi.org/10.3741/JKWRA.2015.48.8.659