DOI QR코드

DOI QR Code

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR

선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가

  • Hwang, Sungchul (Graduate School of Convergence Science, Pusan National University) ;
  • Jo, Seung-hyeon (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Min-Chul (Material & Components Technology Center, Korea Testing Laboratory) ;
  • Cha, Jinseon (Material & Components Technology Center, Korea Testing Laboratory) ;
  • Lee, Inwon (Global Core Research Center for Ships and Offshore Plants, Pusan National University) ;
  • Park, Hyun (Global Core Research Center for Ships and Offshore Plants, Pusan National University) ;
  • Lee, Heesoo (School of Materials Science and Engineering, Pusan National University)
  • 황성철 (부산대학교 하이브리드 소재솔루션 협동과정) ;
  • 조승현 (부산대학교 재료공학부) ;
  • 신민철 (한국산업기술시험원 재료부품기술센터) ;
  • 차진선 (한국산업기술시험원 재료부품기술센터) ;
  • 이인원 (부산대학교 조선해양플랜트글로벌핵심연구센터) ;
  • 박현 (부산대학교 조선해양플랜트글로벌핵심연구센터) ;
  • 이희수 (부산대학교 재료공학부)
  • Received : 2016.02.23
  • Accepted : 2016.05.13
  • Published : 2016.06.30

Abstract

$CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

저온용 SCR 촉매인 $MnO_x$의 촉매 활성을 높이기 위해 $TiO_2$ 지지체와 함께 조촉매로서 $CeO_2$을 사용하였고, 제조된 나노 사이즈의 촉매 특성과 함께 질소산화물 제거 효율에 대해 고찰하였다. $MnO_x-CeO_2/TiO_2$ 촉매 내에서 $CeO_2$ 거동을 확인하기 위해 단일 조성의 $CeO_2$와의 차이점을 미세구조적으로 비교 분석하였다. $MnO_x-CeO_2/TiO_2$ 촉매가 졸겔법을 통해 제조되었으며 낮은 열적 특성으로 인해 평균 $285{\mu}m$ 정도의 큰 입도를 가진 단일 $CeO_2$와는 달리 Ti 지지체와 함께 합성된 촉매의 경우 130 nm 정도로 줄어들었음을 확인하였다. 투과 전자 현경을 이용한 EDS mapping를 통해 Ce-Ti의 강한 interaction이 nano-sized powder 제조의 원인인 것으로 확인하였다. 조촉매 첨가로 인해 $MnO_x/TiO_2$ 촉매에 비해 저온영역에서 20 % 이상의 효율 향상이 있었으며 이는 3성분계 촉매 내에서 $CeO_2$가 나노 사이즈로 잘 분산됨에 따라 촉매 반응에 필요한 산소이온의 교환이 활발히 일어날 수 있었기 때문이다.

Keywords

References

  1. H. Bosch and F. Janssen, Preface, Catal. Today 2 (1988) 369. https://doi.org/10.1016/0920-5861(88)80002-6
  2. P.G.W.A. Kompio, A. Bruckner, F. Hipler, G. Auer, E. Loffler and W. Grunert, "A new view on the relations between tungsten and vanadium in $V_2O_5$ single bond $WO_3/TiO_2$ catalysts for the selective reduction of NO with $NH_3$", J. Catal. 286 (2012) 237. https://doi.org/10.1016/j.jcat.2011.11.008
  3. R.H. Gao, D.S. Zhang, X.G. Liu, L.Y. Shi, P. Maitarad, H.R. Li, J.P. Zhang and W.G. Cao, "Enhanced catalytic performance of $V_2O_5-WO_3/Fe_2O_3/TiO_2$ microspheres for selective catalytic reduction of NO by $NH_3$", Catal. Sci. Technol. 3 (2013) 191. https://doi.org/10.1039/C2CY20332D
  4. M.M. Shafer, B.M. Toner, J.T. Overdier, J.J. Schauer, S.C. Fakra, S. Hu, J.D. Herner and A. Ayala, "Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols", Environ. Sci. Technol. 46 (2012) 189. https://doi.org/10.1021/es200463c
  5. F. Kapteijn, L. Singoredjo, A. Andreini and J.A. Moulijn, "Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia", Appl. Catal. B 3 (1994) 173. https://doi.org/10.1016/0926-3373(93)E0034-9
  6. X.W. Liu, K.B. Zhou, L. Wang, B.Y. Wang and Y.D. Li, "Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods", J. Am. Chem. Soc. 13c (2009) 3140.
  7. X.J. Du, D.S. Zhang, L.Y. Shi, R.H. Gao and J.P. Zhang, "Morphology dependence of catalytic properties of $Ni/CeO_2$ nanostructures for carbon dioxide reforming of methane", J. Phys. Chem. C 116 (2012) 10009. https://doi.org/10.1021/jp300543r
  8. C. Fang, D.S. Zhang, L.Y. Shi, R.H. Gao, H.R. Li, L.P. Ye and J.P. Zhang, "Highly dispersed $CeO_2$ on carbon nanotubes for selective catalytic reduction of NO with $NH_3$", Catal. Sci. Technol. 3 (2013) 803. https://doi.org/10.1039/C2CY20670F
  9. D.S. Zhang, L. Zhang, L.Y. Shi, C. Fang, H.R. Li, R.H. Gao, L. Huang and J.P. Zhang, "In situ supported $MnO_x-CeO_x$ on carbon nanotubes for the low-temperature selective catalytic reduction of NO with $NH_3$", Nanoscale 5 (2013) 1127. https://doi.org/10.1039/c2nr33006g
  10. G. Qi, R.T. Yang and R. Chang, "$MnO_x-CeO_2$ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with $NH_3$ at low temperatures", Appl. Catal. B 51 (2004) 93. https://doi.org/10.1016/j.apcatb.2004.01.023
  11. S.M. Lee, K.H. Park and S.C. Hong, "$MnO_x/CeO_2-TiO_2$ mixed oxide catalysts for the selective catalytic reduction of NO with $NH_3$ at low temperature", Chem. Eng. J. 195-196 (2012) 323. https://doi.org/10.1016/j.cej.2012.05.009
  12. L. Liu, Z. Yao, B. Liu and L. Dong, "Correlation of structural characteristics with catalytic performance of $CuO/Ce_xZr_{1-x}O_2$ catalysts for NO reduction by CO", J. Catal. 275 (2010) 45. https://doi.org/10.1016/j.jcat.2010.07.024
  13. P. Esteves, Y. Wu, C. Dujardin, M.K. Dongare and P. Granger, "Ceria-zirconia mixed oxides as thermal resistant catalysts for the decomposition of nitrous oxide at high temperature", Catal. Today 176 (2011) 453. https://doi.org/10.1016/j.cattod.2010.10.068
  14. J.R. Kim, K.Y. Lee, M.J. Suh and S.-K. Ihm, "Ceria-zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support", Catal. Today 185 (2012) 25. https://doi.org/10.1016/j.cattod.2011.08.018
  15. P. Li, "Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: confirmation of Ce-O-Ti active sites", Environ. Sci. Technol. 46 (2012) 9600. https://doi.org/10.1021/es301661r
  16. J. Fang, H. Bao, B. He, F. Wang, D. Si, Z. Jiang, Z. Pan, S. Wei and W. Huang, "Interfacial and surface structures of $CeO_2-TiO_2$ mixed oxides", J. Phys. Chem. C 111 (2007)19078. https://doi.org/10.1021/jp076627m
  17. P. Li, Y. Xin, Q. Li, Z. Wang, Z. Zhang and L. Zheng, "Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites", Environ. Sci. Technol. 46 (2012) 9600. https://doi.org/10.1021/es301661r
  18. B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant and J.C. Volta, "Structural characterization of $CeO_2-TiO_2$ and $V_2O_5/CeO_2-TiO_2$ catalysts by Raman and XPS techniques", J. Phys. Chem. B 107 (2003) 5162. https://doi.org/10.1021/jp0344601
  19. X. Gao, Y. Jiang, Y. Zhong, Z. Luo and K. Cen, "The activity and characterization of $CeO_2-TiO_2$ catalysts prepared by the sol-gel method for selective catalytic reduction of NO with $NH_3$", J. Hazard. Mater. 174 (2010) 734. https://doi.org/10.1016/j.jhazmat.2009.09.112