DOI QR코드

DOI QR Code

A study on the synthesis of tin oxide crystalline by the liquid reduction precipitation method and hydrothermal process

액상환원침전법 및 수열반응법을 이용한 주석산화물 결정 합성에 관한 연구

  • Park, Il-Jeong (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Geon-Hong (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Dae-Weon (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Choi, Hee-Lack (Department of Materials System Eng., Pukyong University) ;
  • Jung, Hang-Chul (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • Received : 2016.05.12
  • Accepted : 2016.06.03
  • Published : 2016.06.30

Abstract

In this work, tin oxides were obtained by the liquid reduction precipitation method and hydrothermal process using $SnCl_2{\cdot}2H_2O$, $N_2H_4$, and NaOH. Tin oxide crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM). Depending on the molar ratio of the raw materials, tin oxide crystalline with the spherical and rectangular plate-like shape could be obtained, the crystal phase was SnO and $Sn_6O_4(OH)_4$. And the obtained SnO crystals by a hydrothermal reaction showed various shapes, such as, spherical, plate-like and flower-like architectures depending on the temperature conditions.

본 연구에서는 염화주석, 하이드라진 그리고 수산화나트륨을 원료로 하여 용액환원침전법과 수열반응법을 이용하여 주석산화물 결정을 제조하여, 주요 실험 변수에 의한 결정상 및 형상을 XRD와 SEM을 이용하여 분석하였다. 원료의 몰 비에 따라 구형 및 판상의 주석산화물 결정을 얻을 수 있었으며, 그 결정상은 SnO, $Sn_6O_4(OH)_4$이었다. 그리고 수열반응법에 의하여 얻어진 결정 모양은 온도 조건에 따라 판상 및 꽃 모양의 SnO 결정이 얻어졌다.

Keywords

References

  1. G. Patil, D.D. Kajale, D.N. Chavan, N.K. Pawar, P.T. Ahire, S.D. Shinde, V.B. Gaikwad and G.H. Jain, "Synthesis, characterization and gas sensing performance of $SnO_2$ thin films prepared by spray pyrolysis", Bull. Mater. Sci. 34 (2011) 1. https://doi.org/10.1007/s12034-011-0045-0
  2. M.V. Reddy, L.Y.T. Andreea, A.Y. Ling, J.N.C. Hwee, C.A. Lin, S. Admas, K.P. Loh, M.K. Mathe, K.I. Ozoemena and B.V.R. Chowdari, "Effect of preparation temperature and cycling voltage range on molten salt method prepared $SnO_2$", Elctrochimica Acta 106 (2013) 143. https://doi.org/10.1016/j.electacta.2013.05.073
  3. Z. Han, N. Guo, Fa. Li, W. Zhang, H. Zhao and Y. Qian, "Solvothermal preparation and morphological evolution of stannous oxide powders", Materials Letters 48 (2001) 99. https://doi.org/10.1016/S0167-577X(00)00286-X
  4. F.I. Pires, E. Joanni, R. Savu, M.A. Zaghete, E. Longo and J.A. Varela, "Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders", Materials Letters 62 (2008) 239. https://doi.org/10.1016/j.matlet.2007.05.006
  5. J.K. Yu, K.Y. Cha, M.C. Kim, J.S. Han, J.B. Jang, Y.H. Lee and D.H. Kim, "Preparation of nano-sized tin oxide powder by spray pyrolysis process", J. of Korean Inst. of Resources Recycling 17 (2008) 79.
  6. Y. Wang, T. Su, H. Chen, W. Liu, Y. Dong and S. Hu, "Synthesis of hollow $SnO_2$ microspheres and its enhanced photocatalytic properties", Materials Letters 137 (2014) 241. https://doi.org/10.1016/j.matlet.2014.09.028
  7. I.S. Hwang, S.J. Kim, Y.S. Kim, B.K. Ju and J.H. Lee, "VOCs sensor using $SnO_2$ nanowires", J. of the Korean Sensors Society 17 (2008) 69.
  8. Y.I. Lee and Y.H. Choa, "Synthesis of $SnO_2$ nanotubes via electrospinning process and their application to lithium ion battery anodes", J. Kor. Powd. Met. Inst. 19 (2012) 271. https://doi.org/10.4150/KPMI.2012.19.4.271
  9. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park and H. Heinrich, "A rapid hydrothermal synthesis of rutile $SnO_2$ nanowires", Materials Science and Engineering B 157 (2009) 101. https://doi.org/10.1016/j.mseb.2008.12.035
  10. W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu and S.H. Yan, "Synthesis of hollow $SnO_2$ nanobelts and their application in acetone sensor", Materials Letters 132 (2014) 338. https://doi.org/10.1016/j.matlet.2014.06.112
  11. X. Xu, M. Ge, K. Stahl and J.Z. Jiang, "Growth mechanism of cross-like SnO structure synthesized by thermal decomposition", Chemical Physics Letters 482 (2009) 287. https://doi.org/10.1016/j.cplett.2009.10.012
  12. H.C. Park, H.R. Kim and J.H. Lee, "$SnO_2$ two-dimensional nanostructures prepared by solution reduction method and their gas sensing characteristics", Kor. J. Mater. Res. 18 (2008) 438. https://doi.org/10.3740/MRSK.2008.18.8.438
  13. C.S. Moon, H.R. Kim, G. Auchterlonie, J. Drennan and J.H. Lee, "Highly sensitive and fast responding CO sensor using $SnO_2$ nanosheets", Sens. Actuators B 131 (2008) 556. https://doi.org/10.1016/j.snb.2007.12.040
  14. B.R. Kim, C.M. Park, W.J. Lee and I. Kim, "Formation mechanism of SnO plate", Kor. J. Met. Mater. 48 (2010) 1084.
  15. Z.J. Jia, L.P. Zhu, G.H. Liao, Y. Yu and Y.W. Tang, "Preparation and characterization of SnO nanowhiskers", Solid State Commun. 132 (2004) 79. https://doi.org/10.1016/j.ssc.2004.07.028