DOI QR코드

DOI QR Code

Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation

  • Luongo, Angelo (M&MoCS, International Research Center on Mathematics and Mechanics of Complex Systems, University of L'Aquila) ;
  • Casciati, Sara (DICAr-Dipartimento di Ingegneria Civile e Architettura, University of Catania) ;
  • Zulli, Daniele (M&MoCS, International Research Center on Mathematics and Mechanics of Complex Systems, University of L'Aquila)
  • Received : 2015.09.26
  • Accepted : 2016.05.06
  • Published : 2016.07.25

Abstract

In this paper a nonlinear, bistable, single degree of freedom system is considered. It consists of a Duffing oscillator externally excited by a non-resonant, harmonic force. A customized perturbation scheme is proposed to achieve an approximate expression for periodic solutions. It is based on the evaluation of the quasi-steady (slow) solution, and then on a variable change followed by two perturbation steps which aim to capture the fast, decaying contribution of the response. The reconstructed solution, given by the sum of the slow and fast contributions, is in a good agreement with the one obtained by numerical integration.

Keywords

Acknowledgement

Supported by : Natural Science Foundation

References

  1. Ali, S.F., Adhikari, S., Friswell, M.I. and Narayanan, S. (2011), "The analysis of piezomagnetoelastic energy harvesters under broadband random excitations" , J. Appl. Phys., 109(7), 074904. https://doi.org/10.1063/1.3560523
  2. Amin Karami, M. and Inman, J. (2011), "Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems", J. Sound Vib., 330 (23), 5583-5597. https://doi.org/10.1016/j.jsv.2011.06.021
  3. Arrieta, A.F., Hagedorn, P., Erturk, A. and Inman, D.J. (2010), "A piezoelectric bistable plate for nonlinear broadband energy harvesting", Appl. Physics Lett., 97, 104102. https://doi.org/10.1063/1.3487780
  4. Blackman, I. (Ed.) (2004), Selected topics in vibrational mechanics, World Scientific Publishing, New Jersey.
  5. Cao, Q., Wiercigroch, M., Pavlovskaia, E., Thompson, J.T. and Grebogi, C. (2008a), "Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics", Philos. T. R. Soc. A, 366, 635-652. https://doi.org/10.1098/rsta.2007.2115
  6. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C. and Thompson, J.T. (2008b), "The limit case response of the archetypal oscillator for smooth and discontinuous dynamics", Int. J. Nonlinear Mech., 43 (6), 462-473. https://doi.org/10.1016/j.ijnonlinmec.2008.01.003
  7. Cohen, N. and Bucher, I. (2014), "On the dynamics and optimization of a non-smooth bistable oscillator - Application to energy harvesting", J. Sound Vib., 333, 4653-4667. https://doi.org/10.1016/j.jsv.2014.04.006
  8. Cohen, N., Bucher, I. and Feldman, M. (2012), "Slow-fast response decomposition of a bi-stable energy harvester", Mech. Syst. Signal Pr., 31, 29-39. https://doi.org/10.1016/j.ymssp.2012.04.011
  9. Ferrari, M. Bau, M. Guizzetti, M. and Ferrari, V. (2011), "A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations", Sensor. Actuat. A: Phys., 172(1),287-292. https://doi.org/10.1016/j.sna.2011.05.019
  10. Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S. and Trigona, C. (2010), "Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters", Sensor. Actuat. A: Phys., 162(2), 425-431. https://doi.org/10.1016/j.sna.2010.05.022
  11. Han, Q. and Bi, X. (2011), "Bursting oscillations in duffing's equation with slowly changing external forcing", Commun Nonlinear Sci Numer Simulat., 16, 4146-4152. https://doi.org/10.1016/j.cnsns.2011.02.021
  12. Harne, R.L. and Wang, K.W. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mater. Struct., 22 (2), 023001. https://doi.org/10.1088/0964-1726/22/2/023001
  13. Kovacic, I. and Cartmell, M. (2014), "On the behaviour of bistable oscillators with slowly varying external excitation", ENOC Proceedings, Wien, July.
  14. Lin, J.T., Lee, B. and Alphenaar, B. (2010), "The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency", Smart Mater. Struct., 19(4), 045012. https://doi.org/10.1088/0964-1726/19/4/045012
  15. Litak, G., Friswell, M.I. and Adhikari, S. (2010), "Magnetopiezoelastic energy harvesting driven by random excitations" , Appl. Phys. Lett., 96(21), 214103. https://doi.org/10.1063/1.3436553
  16. Masana, R. and Daqaq, M.F. (2012), "Energy harvesting in the super-harmonic frequency region of a twin-well oscillator" , J. Appl. Phys., 111, 044501. https://doi.org/10.1063/1.3684579
  17. Pilipchuk, V.N. (2009), "Closed-form periodic solutions for piecewise-linear vibrating systems", Nonlinear Dynam., 50, 169-178.
  18. Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I. (2010), "Potential benefits of a non-linear stiffness in an energy harvesting device", Nonlinear Dynam., 59, 545-580. https://doi.org/10.1007/s11071-009-9561-5
  19. Shaw, S.W. and Holmes, P.J. (1983), "A periodically forced piecewise linear oscillator", J. Sound Vib., 90 (1), 129-155. https://doi.org/10.1016/0022-460X(83)90407-8
  20. Uspensky, B. and Avramov, K. (2014), "Nonlinear modes of piecewise linear systems under the action of periodic excitation", Nonlinear Dynam., 76(2), 1151-1156, https://doi.org/10.1007/s11071-013-1198-8
  21. Verhulst, F. (2005), Methods and Applications of Singular Perturbations. Springer-Verlag, Berlin.
  22. Verhulst, F. (2007), "Singular perturbation methods for slow-fast dynamics", Nonlinear Dynam., 50 (4), 747-753, ISSN 0924-090X. 10.1007/s11071-007-9236-z.
  23. Zou, K. and Nagarajaiah, S. (2015), "Study of a piecewise linear dynamic system with negative and positive stiffness", Commun Nonlinear Sci Numer Simulat., 22, 1084-1101. https://doi.org/10.1016/j.cnsns.2014.08.016

Cited by

  1. Chattering as a singular problem vol.90, pp.4, 2017, https://doi.org/10.1007/s11071-017-3840-3
  2. A Multi-Parameter Perturbation Solution for Functionally Graded Piezoelectric Cantilever Beams under Combined Loads vol.11, pp.7, 2018, https://doi.org/10.3390/ma11071222
  3. Influences of Environmental Motion Modes on the Efficiency of Ultrathin Flexible Piezoelectric Energy Harvesters vol.32, pp.5, 2016, https://doi.org/10.1007/s10338-019-00085-8
  4. Underactuated fluidic control of a continuous multistable membrane vol.117, pp.10, 2020, https://doi.org/10.1073/pnas.1919738117
  5. Mixed mode oscillations induced by bi-stability and fractal basins in the FGP plate under slow parametric and resonant external excitations vol.137, pp.None, 2016, https://doi.org/10.1016/j.chaos.2020.109814