Acknowledgement
Supported by : Natural Science Foundation
References
- Ali, S.F., Adhikari, S., Friswell, M.I. and Narayanan, S. (2011), "The analysis of piezomagnetoelastic energy harvesters under broadband random excitations" , J. Appl. Phys., 109(7), 074904. https://doi.org/10.1063/1.3560523
- Amin Karami, M. and Inman, J. (2011), "Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems", J. Sound Vib., 330 (23), 5583-5597. https://doi.org/10.1016/j.jsv.2011.06.021
- Arrieta, A.F., Hagedorn, P., Erturk, A. and Inman, D.J. (2010), "A piezoelectric bistable plate for nonlinear broadband energy harvesting", Appl. Physics Lett., 97, 104102. https://doi.org/10.1063/1.3487780
- Blackman, I. (Ed.) (2004), Selected topics in vibrational mechanics, World Scientific Publishing, New Jersey.
- Cao, Q., Wiercigroch, M., Pavlovskaia, E., Thompson, J.T. and Grebogi, C. (2008a), "Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics", Philos. T. R. Soc. A, 366, 635-652. https://doi.org/10.1098/rsta.2007.2115
- Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C. and Thompson, J.T. (2008b), "The limit case response of the archetypal oscillator for smooth and discontinuous dynamics", Int. J. Nonlinear Mech., 43 (6), 462-473. https://doi.org/10.1016/j.ijnonlinmec.2008.01.003
- Cohen, N. and Bucher, I. (2014), "On the dynamics and optimization of a non-smooth bistable oscillator - Application to energy harvesting", J. Sound Vib., 333, 4653-4667. https://doi.org/10.1016/j.jsv.2014.04.006
- Cohen, N., Bucher, I. and Feldman, M. (2012), "Slow-fast response decomposition of a bi-stable energy harvester", Mech. Syst. Signal Pr., 31, 29-39. https://doi.org/10.1016/j.ymssp.2012.04.011
- Ferrari, M. Bau, M. Guizzetti, M. and Ferrari, V. (2011), "A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations", Sensor. Actuat. A: Phys., 172(1),287-292. https://doi.org/10.1016/j.sna.2011.05.019
- Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S. and Trigona, C. (2010), "Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters", Sensor. Actuat. A: Phys., 162(2), 425-431. https://doi.org/10.1016/j.sna.2010.05.022
- Han, Q. and Bi, X. (2011), "Bursting oscillations in duffing's equation with slowly changing external forcing", Commun Nonlinear Sci Numer Simulat., 16, 4146-4152. https://doi.org/10.1016/j.cnsns.2011.02.021
- Harne, R.L. and Wang, K.W. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mater. Struct., 22 (2), 023001. https://doi.org/10.1088/0964-1726/22/2/023001
- Kovacic, I. and Cartmell, M. (2014), "On the behaviour of bistable oscillators with slowly varying external excitation", ENOC Proceedings, Wien, July.
- Lin, J.T., Lee, B. and Alphenaar, B. (2010), "The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency", Smart Mater. Struct., 19(4), 045012. https://doi.org/10.1088/0964-1726/19/4/045012
- Litak, G., Friswell, M.I. and Adhikari, S. (2010), "Magnetopiezoelastic energy harvesting driven by random excitations" , Appl. Phys. Lett., 96(21), 214103. https://doi.org/10.1063/1.3436553
- Masana, R. and Daqaq, M.F. (2012), "Energy harvesting in the super-harmonic frequency region of a twin-well oscillator" , J. Appl. Phys., 111, 044501. https://doi.org/10.1063/1.3684579
- Pilipchuk, V.N. (2009), "Closed-form periodic solutions for piecewise-linear vibrating systems", Nonlinear Dynam., 50, 169-178.
- Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I. (2010), "Potential benefits of a non-linear stiffness in an energy harvesting device", Nonlinear Dynam., 59, 545-580. https://doi.org/10.1007/s11071-009-9561-5
- Shaw, S.W. and Holmes, P.J. (1983), "A periodically forced piecewise linear oscillator", J. Sound Vib., 90 (1), 129-155. https://doi.org/10.1016/0022-460X(83)90407-8
- Uspensky, B. and Avramov, K. (2014), "Nonlinear modes of piecewise linear systems under the action of periodic excitation", Nonlinear Dynam., 76(2), 1151-1156, https://doi.org/10.1007/s11071-013-1198-8
- Verhulst, F. (2005), Methods and Applications of Singular Perturbations. Springer-Verlag, Berlin.
- Verhulst, F. (2007), "Singular perturbation methods for slow-fast dynamics", Nonlinear Dynam., 50 (4), 747-753, ISSN 0924-090X. 10.1007/s11071-007-9236-z.
- Zou, K. and Nagarajaiah, S. (2015), "Study of a piecewise linear dynamic system with negative and positive stiffness", Commun Nonlinear Sci Numer Simulat., 22, 1084-1101. https://doi.org/10.1016/j.cnsns.2014.08.016
Cited by
- Chattering as a singular problem vol.90, pp.4, 2017, https://doi.org/10.1007/s11071-017-3840-3
- A Multi-Parameter Perturbation Solution for Functionally Graded Piezoelectric Cantilever Beams under Combined Loads vol.11, pp.7, 2018, https://doi.org/10.3390/ma11071222
- Influences of Environmental Motion Modes on the Efficiency of Ultrathin Flexible Piezoelectric Energy Harvesters vol.32, pp.5, 2016, https://doi.org/10.1007/s10338-019-00085-8
- Underactuated fluidic control of a continuous multistable membrane vol.117, pp.10, 2020, https://doi.org/10.1073/pnas.1919738117
- Mixed mode oscillations induced by bi-stability and fractal basins in the FGP plate under slow parametric and resonant external excitations vol.137, pp.None, 2016, https://doi.org/10.1016/j.chaos.2020.109814