Acknowledgement
Supported by : Linz Center of Mechatronics (LCM)
References
- Alkhatib, R. and Golnaraghi, M.F. (2003), "Active Structural Vibration Control: A Review", Shock Vib. Dig., 35(5), 367-383. https://doi.org/10.1177/05831024030355002
- Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
- Ashwell, D.G. (1962), "Nonlinear problems", in Handbook of Engineering Mechanics, (Ed., W. Flugge), McGraw Hill, New York, NY, USA.
- Batra, R.C. and Vidoli, S. (2002), "Higher order piezoelectric plate theory derived from a three dimensional variational principle", AIAA J, 40, 91-104. https://doi.org/10.2514/2.1618
- Berger, H.M. (1955), "A new approach to the analysis of large deflections of plates", J. Appl. Mech. - ASCE, 77, 465-472.
- Bonet, J. and Wood, R.D. (2008), Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd Ed., Cambridge University Press, Cambridge, England.
- Carrera, E. and Boscolo, M. (2007), "Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates", Int. J. Numer Meth. Eng., 70(10), 1135-1181. https://doi.org/10.1002/nme.1901
- Crawley, E.F. (1994), "Intelligent structures for aerospace: A Technology Overview and Assessment", AIAA J., 32(8), 1689-1699. https://doi.org/10.2514/3.12161
- Dorfmann, A, and Ogden, R.W. (2005), "Nonlinear Electroelasticity", Acta Mech., 17, 167-183.
- Eringen, A.C. and Maugin, G.A. (1990), Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York, NY, USA.
- Hause, T., Librescu, L. and Johnson, T.F. (1998), "Thermomechanical load-carrying capacity of sandwich flat panels", J. Therm. Stresses, 21(6), 627-653. https://doi.org/10.1080/01495739808956166
- Heuer, H., and Ziegler, F. (2004), "Thermoelastic stability of layered shallow shells", Int. J. Solids Struct., 41, 2111-2120. https://doi.org/10.1016/j.ijsolstr.2003.11.032
- Heuer, R. (1994), "Large flexural vibrations of thermally stressed layered shallow shells", Nonlinear Dynamics, 5(1), 25-38. https://doi.org/10.1007/BF00045078
- Heuer, R., Irschik, H. and Ziegler, F. (1993), "Nonlinear random vibrations of thermally buckled skew plates", Probabilist. Eng. Mech., 8, 265-271. https://doi.org/10.1016/0266-8920(93)90020-V
- Irschik, H. (1986), "Large thermoelastic deflections and stability of simply supported polygonal panels", Acta Mech., 59, 31-46. https://doi.org/10.1007/BF01177058
- Jabbaria, M., Farzaneh Joubaneha, E., Khorshidvanda A.R. and Eslamib, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031
- Jadhav, P.A. and Bajoria, K.M. (2012), "Buckling of piezoelectric functionally graded plate subjected to electro-mechanical loading", Smart Mat. Struct., 21(10), 105005. https://doi.org/10.1088/0964-1726/21/10/105005
- Kamlah, M. (2001), "Ferroelectric and ferroelastic piezoceramics - modeling of electromechanical hysteresis phenomena", Continuum Mech. Therm., 13, 219-268. https://doi.org/10.1007/s001610100052
- Klinkel, S. and Wagner, W. (2006), "A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation", Int. J. Numer Meth. Eng., 65, 349-382. https://doi.org/10.1002/nme.1447
- Klinkel, S. and Wagner, W. (2008), "A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications", Comput. Struct., 86, 38-46. https://doi.org/10.1016/j.compstruc.2007.05.032
- Krommer, M. (2003), "The significance of non-local constitutive relations for composite thin plates including piezoelastic layers with prescribed electric charge", Smart Mater. Struct., 12(3), 318-330. https://doi.org/10.1088/0964-1726/12/3/302
- Krommer, M. and Irschik, H. (2015), "Post-buckling of piezoelectric thin plates", Int. J. Str. Stab. Dyn., 15(7), 1540020, 21pp.
- Lentzen, S., Klosowski, P. and Schmidt, R. (2007), "Geometrically nonlinear finite element simulation of smart piezolaminated plates and shells", Smart Mater. Struct., 16, 2265-2274. https://doi.org/10.1088/0964-1726/16/6/029
- Liu, S.C., Tomizuka, M. and Ulsoy, G. (2005), "Challenges and opportunities in the engineering of intelligent structures", Smart Struct. Syst., 1(1), 1-12. https://doi.org/10.12989/sss.2005.1.1.001
- Marcus, H. (1932), Die Theorie elastischer Gewebe, 2nd edn., Springer, Berlin, Germany.
- Marinkovic, D., Koppe, H. and Gabbert, U. (2007), "Accurate modeling of the electric field within piezoelectric layers for active composite structures", J. Intel. Mat. Syst. Str., 18, 503-513. https://doi.org/10.1177/1045389X06067139
- Marinkovic, D., Koppe, H. and Gabbert, U. (2008), "Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures", Smart Mat. Struct., 17(1), 10pp.
- Nader, M. (2008), Compensation of Vibrations in Smart Structures: Shape Control, Experimental Realization and Feedback Control, Trauner, Linz, Austria.
- Nestorovic, T., Trajkov, M. and Garmabi, S. (2015), "Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm", Smart Struct. Syst., 14(5), 1041-1062.
- Panahandeh-Shahraki, D., Mirdamadi H.R. and Vaseghi, O. (2014), "Thermoelastic buckling analysis of laminated piezoelectric composite plates", Int. J. Mech. Mater. Des., 11(4), 371-385. https://doi.org/10.1007/s10999-014-9284-8
- Stanciulescu, I., Mitchell, T., Chandra, Y., Eason T. and Spottswood, M. (2012), "A lower bound on snap-through instability of curved beams under thermomechanical loads", Int. J. Nonlinear Mech., 47(5), 561-575. https://doi.org/10.1016/j.ijnonlinmec.2011.10.004
- Tan, X. and Vu-Quoc, L. (2005), "Optimal solid shell element for large deformable composite structures with piezoelectric layers and active vibration control", Int. J. Numer Meth. Eng., 64, 1981-2013. https://doi.org/10.1002/nme.1433
- Tani, J., Takagi, T., and Qiu, J. (1998), "Intelligent material systems: application of functional materials", Appl. Mech. Rev., 51, 505-521. https://doi.org/10.1115/1.3099019
- Tauchert, T.R. (1991), "Thermally induced flexure, buckling, and vibration", Appl. Mech. Rev., 44, 347-360. https://doi.org/10.1115/1.3119508
- Tauchert, T.R. (1992), "Piezothermoelastic Behavior of a Laminated Plate", J. Therm. Stresses, 15, 25-37. https://doi.org/10.1080/01495739208946118
- Troger, H. and Steindl, A. (1991), Nonlinear Stability and Bifurcation Theory, An Introduction for Engineers and Applied Scientists, Springer, Vienna, Austria.
- Varelis, D. and Saravanos, D.A. (2002), "Nonlinear coupled mechanics and initial buckling of composite plates with piezoelectric actuators and sensors", Smart Mat. Struct., 11, 330-336. https://doi.org/10.1088/0964-1726/11/3/302
- Vetyukov, Y. (2014a), "Finite element modeling of Kirchhoff-Love shells as smooth material surfaces", ZAMM, 94, 150-163. https://doi.org/10.1002/zamm.201200179
- Vetyukov, Y. (2014b), Nonlinear Mechanics of Thin-Walled Structures: Asymptotics, Direct Approach and Numerical Analysis, Springer, Vienna, Austria.
- Vetyukov, Y., Kuzin, A. and Krommer, M. (2011), "Asymptotic splitting in the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates", Int. J. Solids Struct., 48, 12-23. https://doi.org/10.1016/j.ijsolstr.2010.09.001
- von Karman, T. and Tsien, H.S. (1941), "The buckling of thin cylindrical shells under axial compression", J. Aeronaut. Sci., 8, 303-312. https://doi.org/10.2514/8.10722
- Wu, C.P. and Ding, S. (2015), "Coupled electro-elastic analysis of functionally graded piezoelectric material plates", Smart Struct. Syst., 16(5), 781-806. https://doi.org/10.12989/sss.2015.16.5.781
- Yaghoobi, H. and Rajabi, I. (2013), "Buckling analysis of three-layered rectangular plate with piezoelectric layers", J. Theor. Appl. Mech., 51(4), 813-826.
- Zenz, G., Berger, W., Gerstmayr, J., Nader, M. and Krommer, M. (2013), "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547
- Zheng, S., Wang, X. and Chen, W. (2004), "The formulation of a refined hybrid enhanced assumed strain solid shell element and its application to model smart structures containing distributed piezoelectric sensors/ actuators", Smart Mater. Struct., 13, 43-50. https://doi.org/10.1088/0964-1726/13/4/N02
- Ziegler, F. (1998), Mechanics of Solids and Fluids, 2nd edn., Springer, New York, NY, USA.
- Ziegler, F. and Rammerstorfer, F.G. (1989), "Thermoelastic stability", in Thermal Stresses III, (Es., R.B. Hetnarski), Elsevier, Amsterdam, The Netherlands.
Cited by
- Hybrid asymptotic–direct approach to finite deformations of electromechanically coupled piezoelectric shells 2018, https://doi.org/10.1007/s00707-017-2046-6
- Finite deformations of thin plates made of dielectric elastomers: Modeling, numerics, and stability 2017, https://doi.org/10.1177/1045389X17733052
- Large deformation mixed finite elements for smart structures pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1536932
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
- Electrostrictive polymer plates as electro-elastic material surfaces: Modeling, analysis, and simulation vol.32, pp.3, 2021, https://doi.org/10.1177/1045389x20935640