DOI QR코드

DOI QR Code

Bactericidal Efficacy of a Fumigation Disinfectant Containing Paraformaldehyde Against Salmonella Typhimurium

  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Son, Song-Ee (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yoo, Chang-Yeul (Department of Smart Information Convergence, Gyeongnam Provincial Namhae College) ;
  • Park, Eun-Kee (Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Jung, Ji-Youn (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Kim, Suk (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2016.04.19
  • Accepted : 2016.05.03
  • Published : 2016.06.30

Abstract

This study was performed to evaluate the bactericidal efficacy of a fumigation disinfectant containing 35% paraformaldehyde against Salmonella Typhimurium (S. Typhimurium). In this study, the efficacy test of a fumigant against S. Typhimurium was carried out according to French standard NF T 72-281. The S. Typhimurium working culture suspension number (N value), all bacteria numbers on the carriers exposed to the fumigant (n1, n2, and n3), the number of bacterial suspensions by the pour plate method (N1), the number of bacterial suspensions by the filter membrane method (N2), and the mean number of bacteria recovered on the control carriers (T value), were obtained from the preliminary test. In addition, the reduction number of S. Typhimurium exposed to the fumigant (d value) was calculated using the T value, the mean number of bacteria in the recovery solution (n'1) and the mean number of bacteria on carriers plated in agar (n'2). The N value was $5.5{\times}10^8$ colony forming units (CFU)/mL, and n1, n2, and n3 were higher than 0.5N1, 0.5N2 and 0.5N1, respectively. Additionally, the T value was $3.5{\times}10^6CFU/carrier$. In terms of the bactericidal effect of the fumigant, the d value was 5.25. According to the French standard for fumigants, the d value for an effective bactericidal fumigant should be greater than 5. The results indicated that the fumigant containing 35% paraformaldehyde had an efficient bactericidal activity against S. Typhimurium, and, therefore, can be used to disinfect food materials and kitchen appliances contaminated with foodborne bacteria.

본 연구는 S. Typhimurium을 대상으로 paraformaldehyde 35%를 함유한 훈증소독제의 살균효과를 평가하기 위해 수행되었다. 예비 시험에서, S. Typhimurium의 현탁액 균수는 모두 $3.9{\times}10^8CFU/mL$이었으며, 훈증소독제에 노출시킨 모든 담체의 균수는 평판배지법과 여과법으로 배양한 시험균주 현탁액의 균수의 50%보다 많았다. 또한, 대조 담체로부터 회복된 S. Typhimurium 균수는 모두 $3.3{\times}10^6CFU/mL$이었다. 훈증소독제의 살균효과 시험에서는, 훈증 소독제를 처리한 담체의 S. Typhimurium의 감소 균수는 5.22 log CFU/mL로 나타났다. 이상의 결과로부터, paraformaldehyde를 주성분으로 하는 훈증소독제는 S. Typhimurium에 대해 효과적인 살균력을 갖는 것으로 확인되었으며, 병원성 세균에 오염된 식품재료 및 주방용품의 소독에 적용할 수 있을 것으로 사료된다.

Keywords

References

  1. Rooney, R.M., Cramer, E.H., Mantha, S., Nichols, G., Bartram, J.K., Farber, J.M. and Benembarek, P.K.: A review of outbreaks of foodborne disease associated with passenger ships: evidence for risk management. Public Health Rep. 119, 427-434 (2004). https://doi.org/10.1016/j.phr.2004.05.007
  2. Kunwar, R., Singh, H., Mangla, V. and Hiremath, R.: Outbreak investigation: Salmonella food poisoning. Med. J. Armed. Forces India, 69, 388-391 (2013). https://doi.org/10.1016/j.mjafi.2013.01.005
  3. World Health Organization (WHO): Foodborne Disease Outbreaks: Guidelines for Investigation and Control. WHO, Geneva, pp. 83 (2008).
  4. Kim, G.S., Kim, D.H., Lim, J.J., Han, D.Y., Lee, W.M., Jung, W.C., Min, W.G., Rhee, M.H., Lee, H.J. and Kim, S.: Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen Salmonella within the RAW 264.7 macrophage. Biol. Pharm. Bull. 31, 2012-2017 (2008). https://doi.org/10.1248/bpb.31.2012
  5. Cha, C.N., Lee, Y.E., Son, S.E., Yoo, C.Y., Kim, S. and Lee, H.J.: Antimicrobial efficacies of Citra-Kill(R), disinfectant solution against Salmonella typhimurium and Brucella ovis. J. Environ. Health Sci. 37, 482-487 (2011).
  6. Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O'Brien, S.J., Jones, T.F., Fazil, A. and Hoekstra, R.M.: The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50, 882-889 (2010). https://doi.org/10.1086/650733
  7. European Food Safety Authority (EFSA): The community summary report on trends and sources of zoonoses and zoonotic agents in the European Union in 2007. EFSA J. 223, 312 (2009).
  8. Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L. and Griffin, P.M.: Foodborne illness acquired in the United States - major pathogens. Emerg. Infect. Dis. 17, 7-15 (2011). https://doi.org/10.3201/eid1701.P11101
  9. Batz, M.B., Hoffmann, S., Morris, J.G., Jr.: Ranking the risks: The 10 pathogen-food combinations with the greatest burden on public health. Emerging Pathogens Institute, University of Florida, Gainesville, pp. 8-10 (2011).
  10. Park, M.S., Kim, Y.S., Lee, S.H., Kim, S.H., Park, K.H. and Bahk, G.J.: Estimating the burden of foodborne disease, South Korea, 2008-2012. Foodborne Pathog. Dis. 12, 207-213 (2015). https://doi.org/10.1089/fpd.2014.1858
  11. Cabral, J.P.: Water microbiology - Bacterial pathogens and water. Int. J. Environ. Res. Public Health, 7, 3657-3703 (2010). https://doi.org/10.3390/ijerph7103657
  12. Drumo, R., Pesciaroli, M., Ruggeri, J., Tarantino, M., Chirullo, B., Pistoia, C., Petrucci, P., Martinelli, N., Moscati, L., Manuali, E., Pavone, S., Picciolini, M., Ammendola, S., Gabai, G., Battistoni, A., Pezzotti, G., Alborali, G.L., Napolioni, V., Pasquali, P. and Magistrali, C.F.: Salmonella enterica Serovar Typhimurium exploits inflammation to modify swine intestinal microbiota. Front. Cell Infect. Microbiol. 5, 106 (2016).
  13. Whitehead, R.N., Overton, T.W., Kemp, C.L., Webber, M.A.: Exposure of Salmonella enterica serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS One, 6, e22833 (2011). https://doi.org/10.1371/journal.pone.0022833
  14. Coelhan, M., Bromig, K.H., Glas, K. and Roberts, A.L.: Determination and levels of the biocide ortho-Phenylphenol in canned beers from different countries. J. Agric. Food Chem. 54, 5731-5735 (2006). https://doi.org/10.1021/jf060743p
  15. Trinetta, V., Morgan, M.T. and Linton, R.H.: Use of high-concentration-short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes. Food Microbiol. 27, 1009-1015 (2010). https://doi.org/10.1016/j.fm.2010.06.009
  16. Formato, A., Naviglio, D., Pucillo, G.P. and Nota, G.: Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers. J. Agric. Food Chem. 60, 331-338 (2012). https://doi.org/10.1021/jf204323s
  17. Taylor, L.A., Barbeito, M.S. and Gremillion, G.G.: Paraformaldehyde for surface sterilization and detoxification. Appl. Microbiol. 17, 614-618 (1969).
  18. Kahrs, R.F.: General disinfection guidelines. Rev. Sci. Tech. Off. Int. Epiz. 14, 105-122 (1995). https://doi.org/10.20506/rst.14.1.836
  19. Simoes, M., Lucia C. Simoes, L.C. and Vieira, M.J.: A review of current and emergent biofilm control strategies. LWT - Food Sci. Technol. 43, 573-583 (2010). https://doi.org/10.1016/j.lwt.2009.12.008
  20. Carter, M.Q., Chapman, M.H., Gabler, F. and Brandl, M.T.: Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiol. 49, 189-196 (2015). https://doi.org/10.1016/j.fm.2015.02.002
  21. Neighbor, N.K., Newberry, L.A., Bayyari, G.R., Skeeles, J.K., Beasley, J.N. and McNew, R.W.: The effect of microaerosolized hydrogen peroxide on bacterial and viral poultry pathogens. Poult Sci. 73, 1511-1516 (1994). https://doi.org/10.3382/ps.0731511
  22. Association Francaise de Normalisation (AFNOR): Methods of airborne disinfection of surfaces - Determination of bactericidal, fungicidal, yeasticidal and sopricidal activity. French standard NF T 72-281, AFNOR, Saint-Denis, pp. 6-22 (2009).
  23. McFarland, J.: Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA 49, 1176-1178 (1907).
  24. Mahmoud, B.S. and Linton, R.H.: Inactivation kinetics of inoculated Escherichia coli O157:H7 and Salmonella enterica on lettuce by chlorine dioxide gas. Food Microbiol. 25, 244-252 (2008). https://doi.org/10.1016/j.fm.2007.10.015
  25. Himathongkham, S., Nuanualsuwan, S., Riemann, H. and Cliver, D.O.: Reduction of Escherichia coli O157:H7 and Salmonella typhimurium in artificially contaminated alfalfa seeds and mung beans by fumigation with ammonia. J. Food Prot. 64, 1817-1819 (2001). https://doi.org/10.4315/0362-028X-64.11.1817
  26. Park, E.K., Kim, Y., Yu, E.A., Yoo, C.Y., Choi, H., Kim, S. and Lee, H.J.: Bactericidal efficacy of Fumagari OPP(R), fumigant against Escherchia coli and Salmonella typhimurium. J. Fd Hyg. Safety, 28, 1-7 (2013). https://doi.org/10.13103/JFHS.2013.28.1.001