DOI QR코드

DOI QR Code

Probiotic Potential of Plant-Derived Lactic Acid Bacteria with Antihypertensive Activity

항고혈압 활성을 가진 식물유래 젖산균의 생균제 특성

  • Lee, Ye-Ram (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Son, Young-Jun (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Park, Soo-Yun (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Jang, Eun-Young (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Yoo, Ji-Yeon (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University)
  • 이예람 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 손용준 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 박수연 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 장은영 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 유지연 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 손홍주 (부산대학교 생명환경화학과 및 생명산업융합연구원)
  • Received : 2016.03.03
  • Accepted : 2016.03.14
  • Published : 2016.06.30

Abstract

Lactic acid bacteria (LAB) are industrially important microorganisms for probiotics. The recent widespread application of LAB for preparation of functional food is attributable to the accumulating scientific evidence showing their beneficial effects on human health. In this study, we isolated and characterized plant-derived LAB that show angiotensin-converting enzyme (ACE) inhibitory and antioxidant activities. The selected strain K2 was isolated from Kimchi, and identified as Lactobacillus plantarum by 16S rRNA gene analysis. The strain grew under static and shaking culture systems. They were also able to grow in different culture conditions like $25^{\circ}C{\sim}37^{\circ}C$ temperature, 4~10 pH range and ~6% NaCl concentration. L. plantarum K2 was highly resistant to acid stress; survival rate of the strain at pH 2.5 and 3 were 80% and 91.6%, respectively. The strain K2 also showed high bile resistance to 0.3% bile bovine and 0.3% bile extract with more than 74% of survival rate. The cell grown on MRS agar plate containing bile extract formed opaque precipitate zones around the colonies, indicating they have bile salt hydrolase activity. The strain showed an inhibitory activity against pathogenic bacteria such as Escherichia coli, Staphylococcus aureus and Listeria monocytogenes; antibacterial activity was probably due to the lactic acid. The K2 strain showed relatively higher autoaggregation values, antihypertensive and antioxidant activities. These results suggest that L. plantarum K2 could be not only applied as a pharmabiotic for human health but also is also starter culture applicable to fermentative products.

Keywords

References

  1. Begley, M., Hill, C., Gahan, C. G. M., 2006, Bile salt hydrolase activity in probiotics, Appl. Environ. Microbiol., 72, 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  2. Chateau, N., Deschamps, A. M., Sassi, A. H., 1994, Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium, Lett. Appl. Microbiol., 18, 42-44. https://doi.org/10.1111/j.1472-765X.1994.tb00796.x
  3. Cho, Y. H., Park, S. N., Jeong, S. W., 2009, A Study on the physiological activity and industrial prospects of plant-origin lactic acid bacteria, Kor. J. Dairy Sci. Technol., 27, 53-57.
  4. Chung, H. S., Chushman, D. W., 1971, Spectrometric assay and properties of angiotensin-converting enzyme of rabbit lung, Biochem. Phamacol., 20, 1637-1641. https://doi.org/10.1016/0006-2952(71)90292-9
  5. Chung, W. B., Soe, W. S., Cha, J. Y., Cho, Y. S., 2003, Isolation and characterization of Lactobacillus sp. FF-3 for probiotics production from korean dongchimi, Kor. J. Food Preserv., 10, 406-410.
  6. Champagne, C. P., Gardner, N. J., 2008, Effect of storage in a fruit drink on subsequent survival of probiotic lactobacilli to gastro-intestinal stresses, Food Res. Int., 41, 539-543. https://doi.org/10.1016/j.foodres.2008.03.003
  7. Dashkevicz, M., Feighner, S. D., 1989, Development of a differential medium for bile salt hydrolase-active Lactobacillus spp., Appl. Environ. Microbiol., 55, 11-16.
  8. Gismondo, M. R., Lombardi, L. D. A., 1999, Review of probiotics available to modify gastrointestinal flora, Int. J. Antimicrobial Agents, 12, 287-292. https://doi.org/10.1016/S0924-8579(99)00050-3
  9. Hammes, W. P., Hertel, C., 2002, Research approaches for pre- and probiotics: Challenges and outlook, Food Res. Int., 35, 165-170. https://doi.org/10.1016/S0963-9969(01)00178-8
  10. Kobayashi, Y., Tohyama, K., Terashima, T., 1974, Tolerance of the multiple antibiotic resistant strain, Jpn. J. Microbiol., 29, 691-697.
  11. Kos, B., Ssovic, J., Vukovi, S., Smpraga, M., Frece, J., Matos, S., 2003, Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92, J. Appl. Microbiol., 94, 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  12. Lee, Y., Chang, H. C., 2008, Isolation and characterization of Kimchi lactic acid bacteria showing anti-Helicobacter pylori activity, Kor. J. Microbiol. Biotechnol., 35, 106-114.
  13. Lu, Y., Foo, Y., 2000, Antioxidant and radical scavenging activities of polyphenols from apple pomace, Food Chem., 68, 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3
  14. Messens, W., De Vuyst, L., 2002, Inhibitory substances produced by lactobacilli isolated from sourdoughs - a review, Int. J. Food Microbiol., 72, 31-43. https://doi.org/10.1016/S0168-1605(01)00611-0
  15. Modzelewska-Kapitula, M., Kleukowska, L., Kornacki, K., Lukaszuk, W., 2009, The Evaluation of usefulness of potentially probiotic Lactobacillus strains as components of industrial starter cultures, Polish J. Natural Sci., 24, 254-262. https://doi.org/10.2478/v10020-009-0024-8
  16. Molin, G., 2001, Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v, Am. J. Clin. Nutr., 73, 380S-385S. https://doi.org/10.1093/ajcn/73.2.380s
  17. Morales, F., Morales, J. I., Hernandez, C. H., Hernandez -Sanchez, H., 2011, Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses, Appl. Biochem. Biotechnol., 164, 889-905. https://doi.org/10.1007/s12010-011-9182-6
  18. Nader-Macias, M. E. F., Otero, M. C., Espeche, M. C., Maldonado, N. C., 2008, Advances in the design of probiotic products for the prevention of major diseases in dairy cattle, J. Ind. Microbiol. Biotechnol., 35, 1387-1395. https://doi.org/10.1007/s10295-008-0438-2
  19. Ouwehand, A. C., Salminen, S., Isolauri, E., 2002, Probiotics: An Overview of beneficial effects, Antonie van Leeuwenhoek, 82, 279-289. https://doi.org/10.1023/A:1020620607611
  20. Paik, H. D., Jung, M. Y., Jung, H. Y., Kim, W. S., Kim, K. T., 2002, Characterization of Bacillus polyfermenticus SCD for oral bacteriotherapy of gastrointestinal disorders, Kor. J. Food Sci. Technol., 34, 73-78.
  21. Pereira, D. I. A., McCartney, A. L., Gibson, G. R., 2003, An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties, Appl. Environ. Microbiol., 68, 4743-4752.
  22. Philipp, B., 2011, Bacterial degradation of bile salts, Appl. Microbiol. Biotechnol., 89, 903-915. https://doi.org/10.1007/s00253-010-2998-0
  23. Pihlanto, A., Virtanen, T., Korhonen, H., 2010, Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk, Int. Dairy J., 20, 3-10. https://doi.org/10.1016/j.idairyj.2009.07.003
  24. Quiros, A., Hernandez-Ledesma, B., Ramos, M., Amigo, L., Recio, I., 2005, Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir, J. Dairy Sci., 88, 3480-3487. https://doi.org/10.3168/jds.S0022-0302(05)73032-0
  25. Saarela, M., Mogensen, G., Fonden, R., Matto, J., Mattila-Sandholm, T., 2000, Probiotic bacteria:Safety, functional and technological properties, J. Biotechnol., 84, 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  26. Salminen, S., von Wright, A., Ouwehand, A., 2004, Lactic acid bacteria: Microbiological and functional aspects, Marcel Dekker, Inc., USA.
  27. Schneitz, C., Nuotio, L., Lounatma, K., 1993, Adhesion of Lactobacillus acidophilus to avian intestinal epithelial cells mediated by the crystalline bacterial cell surface layer (S-layer), J. Appl. Bacteriol., 74, 290-294. https://doi.org/10.1111/j.1365-2672.1993.tb03028.x
  28. Shin, M. S., Lee, J. J., Na, S. H., Bae, H. S., Huh, C. S., Baek, Y. J., 1998, Characteristics of Bifidobacterium spp. isolated from korean feces for probiotics, Kor. J. Dairy Sci., 20, 273-282.
  29. Sun, T., Zhao, S., Wang, H., Cai, C., Chen, Y., Zhang, H., 2009, ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China, Eur. Food Res. Technol., 228, 607-612. https://doi.org/10.1007/s00217-008-0969-9
  30. Xu, H., Jeong, H. S., Lee, H. Y., Ahn, J., 2009, Assessment of cell surface properties and adhesion potential of selected probiotic strains, Lett. Appl. Microbiol., 49, 434-442. https://doi.org/10.1111/j.1472-765X.2009.02684.x