DOI QR코드

DOI QR Code

Thermal Decomposition Kinetics of Polyurethane Elastomers Prepared with Different Dianiline Chain Extenders

  • Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
  • Received : 2016.04.08
  • Accepted : 2016.06.08
  • Published : 2016.06.30

Abstract

Thermal decomposition kinetics for two different types of polyurethane elastomers prepared with 2,2'-dichloro-4,4'-methylenedianiline (MOCA) and 3,5-dimethyl-thiotoluenediamine (Ethacure-300), based on PTMG/TDI isocyanate prepolymer, were studied using non-isothermal thermogravimetric analysis (TGA). Thermograms were obtained and analyzed using Friedman (FR) and Kissinger-Akahira-Sunose (KAS) methods for activation energy, $E_a$. The results obtained showed that decomposition reaction of both samples was observed similarly to occur through three different stages, i.e., initial stage with vaporization of low molecular weight materials, second stage of urethane linkage decompositions, and later stage of polyol segment decompositions. However, activation energy values at each stage for the sample cured with Ethacure-300 was much lower than those for the sample with MOCA, exhibiting relatively lower thermal stability for the sample with Ethacure-300 than that with MOCA.

Keywords

References

  1. M. Barikani, N. Fazeli, and M. Barikani, "Study on thermal properties of polyurethane-urea elastomers prepared with different dianiline chain extenders", J. Polym. Eng., 33(1), 87 (2013).
  2. K. Gisselfalt and B. Helgee, "Effect of Soft Segment Length and Chain Extender Structure on Phase Separation and Morphology in Poly (urethane-urea)s", Macromol. Mater. Eng., 288(3), 265 (2003). https://doi.org/10.1002/mame.200390023
  3. X.-D. Chen, N.-Q. Zhou, and H. Zhang, "Preparation and properties of cast polyurethane elastomers with molecularly uniform hard segments based on 2,4-toluene diisocyanate and 3,5-dimethyl-thiotoluene diamine", J. Biomed. Sci. Eng., 2, 245 (2009). https://doi.org/10.4236/jbise.2009.24038
  4. T. O. Ahn, I. S. Choi, H. M. Jeong, and K. Cho, "Thermal and mechanical properties of thermo- plastic polyurethane elastomers from different polymerization methods", Polym. Int., 31, 329 (1993). https://doi.org/10.1002/pi.4990310404
  5. S. Yamasaki, D. Nishiguchi, K. Kojio, and M. Furukawa, "Effects of polymerization method on structure and properties of thermoplastic polyurethanes", J. Polym. Sci. Part B: Polymer Physics, 45, 800 (2007).
  6. C. Demarest, "Life Beyond MOCA", PU Manufacturers Association Annual Meeting, Phoenix, Az May, 1 (2014).
  7. X.-M. Qin, J.-W. Xiong, X.-H. Yang, X.-L. Wang, and Z. Zheng, "Preparation, Morphology, and Properties of cast Polyurethane-Urea Elastomers derived from Sulphone-Containing Aromatic Diamine", J. Appl. Polym. Sci., 104, 3554 (2007). https://doi.org/10.1002/app.25672
  8. R. A. Beck and R. W. Truss, "The Effect of Curatives on the Fracture Toughness of PTMG/TDI Polyurethane Elastomers", Polymer, 36(4), 767 (1995). https://doi.org/10.1016/0032-3861(95)93106-V
  9. J. A. F. F. Rocco, J. E. S. Lima, V. L. Lourenco, N. L. Batista, E. C. Botelho, and K. Iha, "Dynamic Mechanical Properties for Polyurethane Elastomers Applied in Elastomeric Mortar", J. Appl. Polym. Sci., 126, 1461 (2012). https://doi.org/10.1002/app.36847
  10. S. V. Levchik and E. D. Weil, "Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature", Polym. Int., 53, 1585 (2004). https://doi.org/10.1002/pi.1314
  11. Y. Zhang, Z. Xia, H. Huang, and H. Chen, "Thermal degradation of polyurethane based on IPDI", J. Anal. Appl. Pyrolysis, 84, 89 (2009). https://doi.org/10.1016/j.jaap.2008.11.008
  12. W. D. Woolley, "Nitrogen-Containing Products from the Thermal. Decomposition of Flexible Polyurethane Foams", Br. Polym. J., 4, 27 (1972). https://doi.org/10.1002/pi.4980040105
  13. M. Paabo and B. C. Levin, "A Literature Review of the Chemical Nature and Toxicity of the Decomposition Products of Polyethylenes", Fire and Materials, 11(2), 55 (1987). https://doi.org/10.1002/fam.810110203
  14. H. L. Friedman, "Kinetics of Thermal Degradation of Charforming Plastics from Thermogravimetry: Application to a Phenolic Plastic", J. Polym. Sci. Part C: Polymer Symposia., 6(1), 183 (1964). https://doi.org/10.1002/polc.5070060121
  15. M. J. Starink, "The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods", Thermochimica Acta., 404(1-2), 163 (2003). https://doi.org/10.1016/S0040-6031(03)00144-8
  16. A. K. Barick and D. K. Tripathy, "Effect of organoclay on the morphology, mechanical, thermal, and rheological properties of organophilic montmorillonite nanoclay based thermoplastic polyurethane nanocomposites prepared by melt blending", Polym. Eng. Sci., 50(3), 484 (2010). https://doi.org/10.1002/pen.21556