DOI QR코드

DOI QR Code

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • 투고 : 2015.05.30
  • 심사 : 2016.04.16
  • 발행 : 2016.07.25

초록

The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

키워드

참고문헌

  1. Arahman, N. (2014), "Modification of the morphology of the poly(ether sulfone) membrane prepared by dry phase inversion technique", Int. J. App. Eng. Res., 9(21), 10453-10462.
  2. Arahman, N., Sotani, T., Maruyama, T. and Matsuyama, H. (2008), "Effect of hypochlorite treatment on performance of hollow fiber membrane prepared from polyethersulfone/n-methyl-2-pyrrolidone/tetronic 1307 solution", J. Appl. Polym. Sci., 110(2), 687-694. https://doi.org/10.1002/app.28719
  3. Arahman, N., Sotani, T., Maruyama, T. and Matsuyama, H. (2009), "Fouling reduction of a poly(ether sulfone) hollow-fiber membrane with a hydrophilic surfactant prepared via non-solvent-induced phase separation", J. Appl. Polym. Sci., 111(3), 1653-1658. https://doi.org/10.1002/app.29149
  4. Arahman, N., Arifin, B., Mulyati, S., Ohmukai, Y. and Matsuyama, H. (2012), "Structure change of Polyethersulfone Hollow Fiber Membrane Modified with Pluronic F127, Polyvinylpyrrolidone, and Tetronic 1307", Mater Sci. Appl., 3(2), 72-77.
  5. Basri, H., Ismail, A.F. and Aziz, M. (2011), "Polyethersulfone (PES)-silver composite uf membrane: effect of silver loading and pvp molecular weight on membrane morphology and antibacterial activity", Desalination, 273(1), 72-80. https://doi.org/10.1016/j.desal.2010.11.010
  6. Chen, Z., Chen, F., Zeng, F. and Li, J. (2014), "Preparation and characterization of the charged PDMC/Al Composite nanofiltration membrane", Desalination, 349, 106-114. https://doi.org/10.1016/j.desal.2014.06.026
  7. Coates, J. (2000), "Interpretation of Infrared spectra, a practical approach", In: Encyclopedia of Analytical Chemistry, (R.A. Meyers Ed.), Chapter 12; John Wiley and Sons Ltd., UK, pp. 10815-10837.
  8. Esfandian, F., Peyravi, M., Qoreyshi, A.A. and Jahanshahi, M. (2016), "Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration", Membr. Water Treat., Int. J., 7(2), 155-173. https://doi.org/10.12989/mwt.2016.7.2.155
  9. Fang, X., Li, J., Li, X., Sun, X., Shen, J., Han, W. and Wang, L. (2015), "Polyethyleneimine, an effective additive for polyethersulfone ultrafiltration membrane with enhanced permeability and selectivity", J. Membr. Sci., 476, 216-123. https://doi.org/10.1016/j.memsci.2014.11.021
  10. Han, B., Zhang, D., Shao, Z., Kong, L. and Lv, S. (2013), "Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes", Desalination, 311, 80-89. https://doi.org/10.1016/j.desal.2012.11.002
  11. Kumar, M. and Ulbricht, M. (2014), "Low fouling negatively charged hybrid ultrafiltration membranes for protein separation from sulfonated poly(arylene ether sulfone) block copolymer and functionalized multiwalled carbon nanotubes", Sep. Purif. Technol., 27, 181-191.
  12. Kumar, R.S., Arthanareeswaran, G., Paul, D. and Kweon, J.H. (2015), "Modification methods of polyethersulfone membranes for minimizing fouling - Review", Membr. Water Treat., Int. J., 6(4), 323-337. https://doi.org/10.12989/mwt.2015.6.4.323
  13. Lang, W.-Z., Shen, J.-P., Wei, Y.-T., Wu, Q.-Y., Wang, J. and Guo, Y.-J. (2013), "Precipitation, kinetics, morphologies, and properties of poly(vinyl butyral) hollow fiber ultrafiltration membranes with respect to polyvinylpyrrolidone molecular weight", Chem. Eng. J., 225, 25-33. https://doi.org/10.1016/j.cej.2013.03.061
  14. Larsson, C.F., Nylander, T., Jannasch, P. and Weslen, B. (1996), "Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: Effects on protein adsorption", Biomaterials, 17(22), 2199-2207. https://doi.org/10.1016/0142-9612(96)00050-6
  15. Loh, C.H. and Wong, R. (2014), "Fabrication of PVDF hollow fiber membranes: Effects of lowconcentration Pluronic and spinning conditions", J. Membr. Sci., 466, 130-141. https://doi.org/10.1016/j.memsci.2014.04.021
  16. Lv, C., Su, Y., Wang, Y.-Q., Ma, X., Sun, Q. and Jiang, Z. (2007), "Enhanced permeation performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127", J. Membr. Sci., 294(1-2), 68-74. https://doi.org/10.1016/j.memsci.2007.02.011
  17. Malek, S.A.A., Seman, M.N.A., Johnson, D. and Hilal, N. (2012), "Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone", Desalination, 288, 31-39. https://doi.org/10.1016/j.desal.2011.12.006
  18. Marchese, J., Ponce, M., Ochoa, N.A., Prádanos, P., Palacio, L. and Hernández, A. (2003), "Fouling behaviour of polyethersulfone uf membranes made with different PVP", J. Membr. Sci., 211(1), 1-11. https://doi.org/10.1016/S0376-7388(02)00260-0
  19. Nie, S., Xue, J., Lu, Y., Liu, Y., Wang, D., Sun, S., Ran, F., and Zhao, C. (2012), "Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface", Colloid. Surface B., 100, 116-125. https://doi.org/10.1016/j.colsurfb.2012.05.004
  20. Nystrom, M., Ruohomaki, K. and Kaipia, L. (1996), "Humic acid as a fouling agent in filtration", Desalination, 106(1-3), 79-87. https://doi.org/10.1016/S0011-9164(96)00095-1
  21. Pagidi, A., Saranya, R., Arthanareeswaran, G., Ismail, A.F. and Matsuura, T. (2014), "Enhanced oil-water separation using polysulfone membranes modified with polymeric additives", Desalination, 344, 280-288. https://doi.org/10.1016/j.desal.2014.03.033
  22. Smolders, C.A., Reuvers, A.J., Boom, R.M. and Wienk, I.M. (1992), "Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids", J. Membr. Sci., 73(2-3), 259-275. https://doi.org/10.1016/0376-7388(92)80134-6
  23. Wang, Y.-Q., Su, Y., Sun, Q., Ma, X., Ma, X. and Jiang, Z. (2006), "Improved permeation performance of Pluronic F127-polyethersulfone blend ultrafiltration membranes", J. Membr. Sci., 282(1-2), 44-51. https://doi.org/10.1016/j.memsci.2006.05.005
  24. Wienk, I.M., Scholtenhuis, F.H.A.O., Boomgaard, T.V.D. and Smolders, C.A. (1995), "Spinning of hollow fiber ultrafiltration membranes from a polymer blend", J. Membrane Sci., 106(3), 233-243. https://doi.org/10.1016/0376-7388(95)00088-T
  25. Vilakati, G.D., Hoek, E.M.V. and Mamba, B.B. (2014), "Probing the mechanical and thermal properties of polysulfone membranes modified with synthetic and natural polymer additives", Polym. Test., 34, 202-210. https://doi.org/10.1016/j.polymertesting.2014.01.014

피인용 문헌

  1. Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal vol.6, 2017, https://doi.org/10.12688/f1000research.11501.2
  2. Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal vol.6, 2017, https://doi.org/10.12688/f1000research.11501.1
  3. The morphology and filtration performances of poly(ether sulfone) membrane fabricated from different polymer solution vol.197, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201819709001
  4. The Effect of Ca and Mg Ions on the Filtration Profile of Sodium Alginate Solution in a Polyethersulfone-2-(methacryloyloxy) Ethyl Phosphorylchloline Membrane vol.10, pp.9, 2018, https://doi.org/10.3390/w10091207
  5. Morphology and performance of polyvinyl chloride membrane modified with Pluronic F127 vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.15077.1
  6. Morphology and performance of polyvinyl chloride membrane modified with Pluronic F127 vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.15077.2
  7. The effect of poly ethylene glycol additive on the characteristics and performance of cellulose acetate ultrafiltration membrane for removal of Cr(III) from aqueous solution vol.352, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/352/1/012051
  8. Characterization of Polydopamine-Coated Polyethersulfone (PES) membrane for water purification vol.352, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/352/1/012052
  9. Improving Water Permeability of Hydrophilic PVDF Membrane Prepared via Blending with Organic and Inorganic Additives for Humic Acid Separation vol.24, pp.22, 2016, https://doi.org/10.3390/molecules24224099
  10. Production of High Flux Poly(Ether Sulfone) Membrane Using Silica Additive Extracted from Natural Resource vol.10, pp.1, 2016, https://doi.org/10.3390/membranes10010017
  11. Antimicrobial Hydrophilic Membrane Formed by Incorporation of Polymeric Surfactant and Patchouli Oil vol.13, pp.22, 2016, https://doi.org/10.3390/polym13223872