DOI QR코드

DOI QR Code

Mathematical modeling of humidification process by means of hollow fiber membrane contactor

  • Marjani, Azam (Department of Chemistry, Arak Branch, Islamic Azad University) ;
  • Baghdadi, Ali (Department of Chemistry, Arak Branch, Islamic Azad University) ;
  • Ghadiri, Mehdi (Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University)
  • Received : 2016.01.13
  • Accepted : 2016.03.29
  • Published : 2016.07.25

Abstract

Modeling and simulation of air humidification by hollow fiber membrane contactors are investigated in the current study. A computational fluid dynamic model was developed by solving the k-epsilon turbulence 2D Navier-Stokes equations as well as mass conservation equations for steady-state conditions in membrane contactors. Finite element method is used for the study of the air humidification under different operating conditions, with a focus on the humidity density, total mass transfer flux and velocity field. There has been good agreement between simulation results and experimental data obtained from literature. It is found that the enhancement of air stream decreases the outlet humidity from 0.392 to 0.340 (module 1) and from 0.467 to 0.337 (module 2). The results also indicated that there has been an increase in air velocity in the narrow space of shell side compared with air velocity wide space of shell side. Also, irregular arrangement has lower dead zones than regular arrangement which leads to higher water flux.

Keywords

References

  1. Barati, F., Ghadiri, M., Ghasemi, R. and Nobari, H.M. (2014), "CFD simulation and modeling ofmembraneassisted separation of organic compounds from wastewater", Chem. Eng. Technol., 37(1), 81-86. https://doi.org/10.1002/ceat.201300278
  2. Bergero, S. and Chiari, A. (2001), "Experimental and theoretical analysis of air humidification/humidification processes using hydrophobic capillary contactors", Appl. Therm. Eng., 21(11), 1119-1135. https://doi.org/10.1016/S1359-4311(00)00107-1
  3. Bergero, S. and Chiari, A. (2010), "Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system", Energ. Buildings, 42(11), 1976-1986. https://doi.org/10.1016/j.enbuild.2010.06.003
  4. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002), Transport Phenomena, John Wiley & Sons, New York, NY, USA.
  5. Chao, C.-H. and Jen, T.-C. (2013), "A new humidification and heat control method of cathode air for a PEM fuel cell stack", Int. J. Heat Mass Tran., 58(1-2), 117-124. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.018
  6. Daraei, A., Aghasafari, P., Ghadiri, M. and Marjani, A. (2014), "Modeling and transport analysis of silver extraction in porous membrane extractors by computational methods", Trans. Indian Inst. Met., 67(2), 223-227. https://doi.org/10.1007/s12666-013-0339-6
  7. Du, J.R., Liu, L., Chakma, A. and Feng, X. (2010), "Using poly(N,N-dimethylaminoethyl methacrylate)/ polyacrylonitrile composite membranes for gas dehydration and humidification", Chem. Eng Sci., 65(16), 4672-4681. https://doi.org/10.1016/j.ces.2010.05.005
  8. Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer modeling of ion transport through nanoporous media", Desalination, 281, 325-333. https://doi.org/10.1016/j.desal.2011.08.025
  9. Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors", Desalination, 275(1-3), 126-132. https://doi.org/10.1016/j.desal.2011.02.039
  10. Fadaei, F., Hoshyargar, V., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects", Desalination, 284, 316-323. https://doi.org/10.1016/j.desal.2011.09.018
  11. Fasihi, M., Shirazian, S., Marjani, A. and Rezakazemi, M. (2012), "Computational fluid dynamics simulation of transport phenomena in ceramic membranes for $SO_2$ separation", Math. Comput. Model., 56(11-12), 278-286. https://doi.org/10.1016/j.mcm.2012.01.010
  12. Ghadiri, M. and Ashrafizadeh, S.N. (2014), "Mass transfer in molybdenum extraction from aqueous solutions using nanoporous membranes", Chem. Eng. Technol., 37(4), 597-604. https://doi.org/10.1002/ceat.201300117
  13. Ghadiri, M. and Shirazian, S. (2013), "Computational simulation of mass transfer in extraction of alkali metals by means of nanoporous membrane extractors", Chem. Eng. Proces: Process Intensifi., 69, 57-62. https://doi.org/10.1016/j.cep.2013.02.008
  14. Ghadiri, M., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of gold extraction in membrane Extractors", Chem. Eng. Technol., 35(12), 2177-2182. https://doi.org/10.1002/ceat.201200289
  15. Ghadiri, M., Fakhri, S. and Shirazian, S. (2013a), "Modeling and CFD simulation of water desalination using nanoporous membrane contactors", Ind. Eng. Chem. Res., 52(9), 3490-3498. https://doi.org/10.1021/ie400188q
  16. Ghadiri, M., Ghasemi Darehnaei, M., Sabbaghian, S. and Shirazian, S. (2013b), "Computational simulation for transport of priority organic pollutants through nanoporous membranes", Chem. Eng. Technol., 36(3), 507-512. https://doi.org/10.1002/ceat.201200513
  17. Ghadiri, M., Marjani, A. and Shirazian, S. (2013c), "Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors", Int. J. Greenhouse Gas Control, 13, 1-8. https://doi.org/10.1016/j.ijggc.2012.11.030
  18. Ghadiri, M., Abkhiz, V., Parvini, M. and Marjani, A. (2014a), "Simulation of membrane distillation for purifying water containing 1,1,1-Trichloroethane", Chem. Eng. Technol., 37(3), 543-550. https://doi.org/10.1002/ceat.201300473
  19. Ghadiri, M., Fakhri, S. and Shirazian, S. (2014b), "Modeling of water transport through nanopores of membranes in direct-contact membrane distillation process", Poly. Eng. Sci., 54(3), 660-666. https://doi.org/10.1002/pen.23601
  20. Ghadiri, M., Parvini, M. and Darehnaei, M.G. (2014c), "Simulation of zinc extraction from aqueous solutions using polymeric hollow-fibers", Poly. Eng. Sci., 54(10), 2222-2227. https://doi.org/10.1002/pen.23771
  21. Ghadiri, M., Asadollahzadeh, M. and Hemmati, A. (2015), "CFD simulation for separation of ion from wastewater in a membrane contactor", J. Water Process Eng., 6, 144-150. https://doi.org/10.1016/j.jwpe.2015.04.002
  22. Hemmati, M., Nazari, N., Hemmati, A. and Shirazian, S. (2015), "Phenol removal from wastewater by means of nanoporous membrane contactors", J. Ind. Eng. Chem., 21, 1410-1416. https://doi.org/10.1016/j.jiec.2014.06.015
  23. Huang, S.-M. and Yang, M. (2014), "Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification", J. Membr. Sci., 449, 184-192. https://doi.org/10.1016/j.memsci.2013.08.033
  24. Huang, S.-M., Yang, M., Yang, Y. and Yang, X. (2013), "Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank for air humidification", Int. J. Therm. Sci., 73, 28-37. https://doi.org/10.1016/j.ijthermalsci.2013.05.013
  25. Kneifel, K., Nowak W.A., Hilke, R., Just, R. and Peinemann, K.V. (2006), "Hollow fiber membrane contactor for air humidity control: Modules and membranes", J. Membr. Sci., 276(1-2), 241-251. https://doi.org/10.1016/j.memsci.2005.09.052
  26. Kong, I.M., Choi, J.W., Kim, S.I., Lee, E.S. and Kim, M.S. (2015), "Experimental study on the selfhumidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer", Appl. Energ., 145, 345-353. https://doi.org/10.1016/j.apenergy.2015.02.027
  27. Li, J. and Ito, A. (2008), "Dehumidification and humidification of air by surface-soaked liquid membrane module with triethylene glycol", J. Membr. Sci., 325(2), 1007-1012. https://doi.org/10.1016/j.memsci.2008.09.034
  28. Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S.Z. and Moradi, S. (2013), "CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor", Chem. Eng. Proces.: Process Intensifi., 72, 130-136.
  29. Moradi, S., Rajabi, Z., Mahammadi, M., Salimi, M., Homami, S.S., Seydei, M.K. and Shirazian, S. (2013), "3 dimensional hydrodynamic analysis of concentric draft tube airlift reactors with different tube diameters", Math. Comput. Model., 57(5-6), 1184-1189. https://doi.org/10.1016/j.mcm.2012.10.021
  30. Nosratinia, F., Ghadiri, M. and Ghahremani, H. (2014), "Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors", J. Ind. Eng. Chem., 20(5), 2958-2963. https://doi.org/10.1016/j.jiec.2013.10.065
  31. Paul, S.S., Ormiston, S.J. and Tachie, M.F. (2008), "Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle", Int. J. Heat Fluid Flow, 29(2), 387-414. https://doi.org/10.1016/j.ijheatfluidflow.2007.10.001
  32. Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of $CO_2$ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine", Int. J. Greenhouse Gas Control, 15, 142-149. https://doi.org/10.1016/j.ijggc.2013.02.011
  33. Rezakazemi, M., Ghafarinazari, A., Shirazian, S. and Khoshsima, A. (2013a), "Numerical modeling and optimization of wastewater treatment using porous polymeric membranes", Poly. Eng. Sci., 53(6), 1272-1278. https://doi.org/10.1002/pen.23375
  34. Rezakazemi, M., Iravaninia, M., Shirazian, S. and Mohammadi, T. (2013b), "Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane", Poly. Eng. Sci., 53(7), 1494-1501. https://doi.org/10.1002/pen.23410
  35. Roostaiy Ghalehnooiy, M., Marjani, A. and Ghadiri, M. (2015), "Synthesis and characterization of polyurethane/poly(vinylpyridine) composite membranes for desulfurization of gasoline", RSC Advances, 5(116), 95994-96001. https://doi.org/10.1039/C5RA13951A
  36. Shirazian, S. and Ashrafizadeh, S.N. (2010), "Mass transfer simulation of caffeine extraction by subcritical $CO_2$ in a hollow-fiber membrane contactor", Solvent Extr. Ion Exc., 28(2), 267-286. https://doi.org/10.1080/07366290903557932
  37. Shirazian, S. and Ashrafizadeh, S.N. (2011), "Near-critical extraction of the fermentation products by membrane contactors: A mass transfer simulation", Ind. Eng. Chem. Res., 50(4), 2245-2253. https://doi.org/10.1021/ie101343r
  38. Shirazian, S. and Ashrafizadeh, S.N. (2013), "3D modeling and simulation of mass transfer in vapor transport through porous membranes", Chem. Eng. Technol., 36(1), 177-185. https://doi.org/10.1002/ceat.201200299
  39. Shirazian, S., Marjani, A. and Rezakazemi, M. (2012a), "Separation of $CO_2$ by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling", Eng. Comput., 28(2), 189-198. https://doi.org/10.1007/s00366-011-0237-7
  40. Shirazian, S., Pishnamazi, M., Rezakazemi, M., Nouri, A, Jafari, M. and Noroozi, S. (2012b), "Implementation of the finite element method for simulation of mass transfer in membrane contactors", Chem. Eng. Technol., 35(6), 1077-1084. https://doi.org/10.1002/ceat.201100397
  41. Tahvildari, K., Zarabpour, A., Ghadiri, M. and Hemmati, A. (2014), "Numerical simulation studies on heat and mass transfer using vacuum membrane distillation", Poly. Eng. Sci., 54(11), 2553-2559. https://doi.org/10.1002/pen.23799
  42. Wu, Y., Peng, X., Liu, J., Kong, Q., Shi, B. and Tong, M. (2002), "Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes", J. Membr. Sci., 196(2), 179-183. https://doi.org/10.1016/S0376-7388(01)00564-6
  43. Zhang, L.-Z. (2012), "Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification", Int. J. Heat Mass Trans., 55(21-22), 5861-5869. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.083
  44. Zhang, L.-Z. and Huang, S.-M. (2011), "Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification", Int. J. Heat Mass Trans., 54(5-6), 1055-1063. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.025
  45. Zhang, L.-Z. and Li, Z.-X. (2013), "Convective mass transfer and pressure drop correlations for cross-flow structured hollow fiber membrane bundles under low Reynolds numbers but with turbulent flow behaviors", J. Membr. Sci., 434, 65-73. https://doi.org/10.1016/j.memsci.2013.01.058

Cited by

  1. Computational fluid dynamics modeling of uranium(VI) transport through hollow fiber supported liquid membrane vol.56, pp.16, 2016, https://doi.org/10.1080/01496395.2020.1852259