DOI QR코드

DOI QR Code

Influence of seismic design rules on the robustness of steel moment resisting frames

  • Received : 2015.10.30
  • Accepted : 2016.04.30
  • Published : 2016.06.30

Abstract

Seismic design criteria allow enhancing the structural ductility and controlling the damage distribution. Therefore, detailing rules and design requirements given by current seismic codes might be also beneficial to improve the structural robustness. In this paper a comprehensive parametric study devoted to quantifying the effectiveness of seismic detailing for steel Moment Resisting Frames (MRF) in limiting the progressive collapse under column loss scenarios is presented and discussed. The overall structural performance was analysed through nonlinear static and dynamic analyses. With this regard the following cases were examined: (i) MRF structures designed for wind actions according to Eurocode 1; (ii) MRF structures designed for seismic actions according to Eurocode 8. The investigated parameters were (i) the number of storeys; (ii) the interstorey height; (iii) the span length; (iv) the building plan layout; and (v) the column loss scenario. Results show that structures designed according to capacity design principles are less robust than wind designed ones, provided that the connections have the same capacity threshold in both cases. In addition, the numerical outcomes show that both the number of elements above the removed column and stiffness of beams are the key parameters in arresting progressive collapse.

Keywords

References

  1. Alashker, Y., Honghao, L. and El-Tawil, S. (2011), "Approximations in progressive collapse modelling", J. Struct. Eng., 137(9), 914-924. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000452
  2. ASCE (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings - FEMA 356, Washington D.C., USA.
  3. Baker, J.W., Schubert, M. and Faber, M.H. (2008), "On the assessment of robustness", Struct. Safety, 30(3), 253-267. https://doi.org/10.1016/j.strusafe.2006.11.004
  4. CEN (2004), EN 1998-1 - Eurocode 8 - Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, Brussels, Belgium.
  5. CEN (2005), EN 1993-1-1 - Eurocode 3 - Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels, Belgium.
  6. CEN (2006), EN 1991-1-7 - Eurocode 1 - Actions on structures - Part 1-7: General actions - Accidental actions, Brussels, Belgium.
  7. Comeliau, L., Demonceau, J.F. and Jaspart, J.P. (2010), "Robustness of steel and composite buildings under impact loading", SDSS'Rio 2010 Stability and Ductility of Steel Structures, Rio de Janeiro, Brazil, September.
  8. CSI (2009), CSI Analysis Reference Manual - For SAP 2000, ETABS and SAFE, CSI, Berkeley, CA, USA.
  9. D'Aniello, M., Landolfo, R., Piluso, V. and Rizzano, G. (2012), "Ultimate behaviour of steel beams under non-uniform bending", J. Const. Steel Res., 78, 144-158. https://doi.org/10.1016/j.jcsr.2012.07.003
  10. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Wall. Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015
  11. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin-Wall. Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020
  12. Dassault (2010), Abaqus 6.13 - Abaqus Analysis User's Manual.
  13. Dassault (2013), Abaqus 6.13 - Abaqus Analysis User's Manual.
  14. Della Corte, G., D'Aniello, M. and Landolfo, R. (2013), "Analytical and numerical study of plastic overstrength of shear links", J. Const. Steel Res., 82, 19-32. https://doi.org/10.1016/j.jcsr.2012.11.013
  15. Dinu, F., Dubina, D. and Marginean, I. (2015), "Improving the structural robustness of multi-storey steelframe buildings", Struct. Infrastr. Eng., 11(8), 1028-1041. https://doi.org/10.1080/15732479.2014.927509
  16. El-Tawil, S., Li, H. and Kunnath, S. (2014), "Computational simulation of gravity-induced progressive collapse of steel-frame buildings: Current trends and future research needs", J. Struct. Eng., 140(8), 216-228.
  17. Formisano, A. and Mazzolani, F.M. (2010), "On the catenary effect of steel buildings", COST ACTION C26: Urban Habitat Constructions under Catastrophic Events - Proceedings of the Final Conference, Naples, Italy, September, 619-624.
  18. Formisano, A. and Mazzolani, F.M. (2012), "Progressive collapse and robustness of steel framed structures", Proceedings of the 11th International Conference on Computational Structures Technology, Stirlingshire, Scotland, month.
  19. Formisano, A., Landolfo, R. and Mazzolani, F.M. (2015), "Robustness assessment approaches for steel framed structures under catastrophic events", Comput. Struct., 147, 216-228. https://doi.org/10.1016/j.compstruc.2014.09.010
  20. Fu, F. (2010), "3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings - Parametric study", Eng. Struct., 32(12), 3974-3980. https://doi.org/10.1016/j.engstruct.2010.09.008
  21. Gerasimidis, S. (2014), "Analytical assessment of steel frames progressive collapse vulnerability to corner column loss", J. Const. Steel Res., 95, 1-9. https://doi.org/10.1016/j.jcsr.2013.11.012
  22. Gerasimidis, S. and Baniotopoulos, C. (2015), "Progressive collapse mitigation of 2D steel moment frames: assessing the effect of different strengthening schemes", Stahlbau, 84(5), 324-331. https://doi.org/10.1002/stab.201510261
  23. Gerasimidis, S., Deodatis, G., Kontoroupi, T. and Ettouney, M. (2014), "Loss-of-stability induced progressive collapse modes in 3D steel moment frames", Struct. Infrastr. Eng., 11(3), 334-344. https://doi.org/10.1080/15732479.2014.885063
  24. Grecea, D., Dinu, F. and Dubina, D. (2004), "Performance criteria for MR steel frames in seismic zones", J. Const. Steel Res., 60(3-5), 739-749. https://doi.org/10.1016/S0143-974X(03)00140-8
  25. GSA (2003), Progressive Collapse Analysis and Guidelines for New Federal Office Buildings and Major Modernization Projects.
  26. Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Const. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022
  27. Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., Int. J., 17(3), 215-236. https://doi.org/10.12989/scs.2014.17.3.215
  28. Hayes, J., Woodson, S., Pekelnicky, R., Poland, C., Corley, W. and Sozen, M. (2005), "Can strengthening for earthquake improve blast and progressive collapse resistance?", J. Struct. Eng., 131(8), 1157-1177. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1157)
  29. Izzudin, B., Vlassis, A., Elghazouli, A. and Nethercot, D. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
  30. Jahromi, H. (2009), "Progressive collapse of building structures - Influence of membrane action in floor slabs", M.Sc. Dissertation; Imperial College London, London, UK.
  31. Khandelwal, K., El-Tawil, S., Kunnath, S. and Lew, H. (2008), "Macromodel-Based Simulation of Progressive Collapse: Steel Frame Structures", J. Struct. Eng., 137(7), 1070-1078.
  32. Kim, T. and Kim, J. (2009), "Collapse analysis of steel moment frames with various seismic connections", J. Const. Steel Res., 65, 1316-1322. https://doi.org/10.1016/j.jcsr.2008.11.006
  33. Lalani, M. and Shuttleworth, E.P. (1990), "The ultimate state of offshore platforms using reserve and residual strength principles", Proceedings of the 22nd Offshore Technology Conference, Houston, TX, USA, May.
  34. Lu, D., Cui, S., Song, P. and Chen, Z. (2012), "Robustness assessment for progressive collapse of framed structures using pushdown analysis method", Int. J. Reliab. Saf., 6(1-3), 15-37. https://doi.org/10.1504/IJRS.2012.044293
  35. Ruth, P., Marchand, K. and Williamson, E. (2006), "Static equivalency in progressive collapse alternate path analysis: Reducing conservatism while retaining structural integrity", J. Perf. Constr. Fac., 20(4), 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
  36. Starossek, U. and Haberland, M. (2008), "Approaches to measures of structural robustness", Proceedings of IABMAS'08, 4th International Conference on Bridge Maintenance, Safety and Management, Seoul, Korea, July.
  37. Tsai, M., and Lin, B. (2009), "Dynamic amplfication factor for progressive collapse resistance analysis of a RC building", Struct. Des. Tall Sp. Build., 18(5), 469-486. https://doi.org/10.1002/tal.449
  38. Tartaglia, R., D'Aniello, M. and Landolfo, R. (2016), "Nonlinear performance of extended stiffened end plate bolted beam-to-column joints subjected to column removal", Op. Civ. Eng. J.
  39. Tenchini, A., D'Aniello, M., Rebelo, C., Landolfo, R., da Silva, L.S. and Lima, L. (2014), "Seismic performance of dual-steel moment resisting frames", J. Const. Steel Res., 101, 437-454. https://doi.org/10.1016/j.jcsr.2014.06.007
  40. USDoD (2005), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
  41. USDoD (2009), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
  42. USDoD (2013), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
  43. Xu, G. and Ellingwood, B. (2011), "Probabilistic assessment of pre-Northridge steel moment resisting frames", J. Struct. Eng., 137, 925-934. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000403

Cited by

  1. Numerical study on a fully-prefabricated damage-tolerant beam to column connection for an earthquake-resilient frame vol.159, 2018, https://doi.org/10.1016/j.engstruct.2018.01.011
  2. Parametric finite element analyses on flush end-plate joints under column removal vol.137, 2017, https://doi.org/10.1016/j.jcsr.2017.06.012
  3. Effects of Postelastic Stiffness Ratio on Dynamic Increase Factor in Progressive Collapse vol.31, pp.6, 2017, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001109
  4. Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis vol.115, 2017, https://doi.org/10.1016/j.tws.2017.02.006
  5. Effects of damping ratio on dynamic increase factor in progressive collapse vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.677
  6. Seismic design of extended stiffened end-plate joints in the framework of Eurocodes vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.09.017
  7. Full strength extended stiffened end-plate joints: AISC vs recent European design criteria vol.159, 2018, https://doi.org/10.1016/j.engstruct.2017.12.053
  8. Study on Structural Robustness of Isolated Structure Based on Seismic Response vol.8, pp.9, 2018, https://doi.org/10.3390/app8091686
  9. A New Rate-Dependent Constitutive Model of Superelastic Shape Memory Alloys and Its Simple Application in a Special Truss Moment Frame Simulation vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/1634702
  10. Numerical Study on Moment Resisting Frames under Monotonic and Cyclic Loads vol.763, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.763.625
  11. Assessment of Progressive Collapse Resistance of Steel Structures with Moment Resisting Frames vol.9, pp.1, 2019, https://doi.org/10.3390/buildings9010019
  12. Consideration of second-order effects on plastic design of steel moment resisting frames pp.1573-1456, 2019, https://doi.org/10.1007/s10518-019-00573-9
  13. Seismic Behaviour of Strap-Braced LWS Structures: Shake Table Testing and Numerical Modelling vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012032
  14. Influence of Dissipative Joints on the Behaviour of Steel MRFs: FREEDAM vs Equal-Strength Bolted Joints vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012037
  15. Preliminary Finite Element Analyses on the Experimental Mock-Up Frames of FREEDAM Research Project vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012038
  16. Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal vol.11, pp.1, 2017, https://doi.org/10.2174/1874149501711010369
  17. A method to evaluate the risk-based robustness index in blast-influenced structures vol.12, pp.1, 2016, https://doi.org/10.12989/eas.2017.12.1.047
  18. Simplified criteria for finite element modelling of European preloadable bolts vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.643
  19. Ultimate Performance of External End-plate Bolted Joints Under Column Loss Scenario Accounting for the Influence of the Transverse Beam vol.12, pp.0, 2016, https://doi.org/10.2174/1874836801812010132
  20. Finite element simulations on the ultimate response of extended stiffened end-plate joints vol.27, pp.6, 2018, https://doi.org/10.12989/scs.2018.27.6.727
  21. Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate vol.28, pp.2, 2016, https://doi.org/10.12989/scs.2018.28.2.139
  22. The use of steel rbs to increase ductility of wooden beams vol.169, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2018.05.024
  23. Numerical investigation of semi-rigid connection ultimate capacity vol.71, pp.4, 2016, https://doi.org/10.1590/0370-44672018710031
  24. Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action vol.30, pp.3, 2019, https://doi.org/10.12989/scs.2019.30.3.253
  25. Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections vol.36, pp.4, 2020, https://doi.org/10.12989/scs.2020.36.4.427
  26. An Overview of Progressive Collapse Behavior of Steel Beam-to-Column Connections vol.10, pp.17, 2016, https://doi.org/10.3390/app10176003
  27. Influence of the P-Delta Effect on the Design of Steel Moment Resisting Frame in Seismic Areas vol.873, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.873.33
  28. Progressive collapse of regular- and irregular-plan concrete structures in an earthquake vol.174, pp.2, 2016, https://doi.org/10.1680/jstbu.18.00138