References
- Alashker, Y., Honghao, L. and El-Tawil, S. (2011), "Approximations in progressive collapse modelling", J. Struct. Eng., 137(9), 914-924. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000452
- ASCE (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings - FEMA 356, Washington D.C., USA.
- Baker, J.W., Schubert, M. and Faber, M.H. (2008), "On the assessment of robustness", Struct. Safety, 30(3), 253-267. https://doi.org/10.1016/j.strusafe.2006.11.004
- CEN (2004), EN 1998-1 - Eurocode 8 - Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, Brussels, Belgium.
- CEN (2005), EN 1993-1-1 - Eurocode 3 - Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels, Belgium.
- CEN (2006), EN 1991-1-7 - Eurocode 1 - Actions on structures - Part 1-7: General actions - Accidental actions, Brussels, Belgium.
- Comeliau, L., Demonceau, J.F. and Jaspart, J.P. (2010), "Robustness of steel and composite buildings under impact loading", SDSS'Rio 2010 Stability and Ductility of Steel Structures, Rio de Janeiro, Brazil, September.
- CSI (2009), CSI Analysis Reference Manual - For SAP 2000, ETABS and SAFE, CSI, Berkeley, CA, USA.
- D'Aniello, M., Landolfo, R., Piluso, V. and Rizzano, G. (2012), "Ultimate behaviour of steel beams under non-uniform bending", J. Const. Steel Res., 78, 144-158. https://doi.org/10.1016/j.jcsr.2012.07.003
- D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Wall. Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015
- D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin-Wall. Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020
- Dassault (2010), Abaqus 6.13 - Abaqus Analysis User's Manual.
- Dassault (2013), Abaqus 6.13 - Abaqus Analysis User's Manual.
- Della Corte, G., D'Aniello, M. and Landolfo, R. (2013), "Analytical and numerical study of plastic overstrength of shear links", J. Const. Steel Res., 82, 19-32. https://doi.org/10.1016/j.jcsr.2012.11.013
- Dinu, F., Dubina, D. and Marginean, I. (2015), "Improving the structural robustness of multi-storey steelframe buildings", Struct. Infrastr. Eng., 11(8), 1028-1041. https://doi.org/10.1080/15732479.2014.927509
- El-Tawil, S., Li, H. and Kunnath, S. (2014), "Computational simulation of gravity-induced progressive collapse of steel-frame buildings: Current trends and future research needs", J. Struct. Eng., 140(8), 216-228.
- Formisano, A. and Mazzolani, F.M. (2010), "On the catenary effect of steel buildings", COST ACTION C26: Urban Habitat Constructions under Catastrophic Events - Proceedings of the Final Conference, Naples, Italy, September, 619-624.
- Formisano, A. and Mazzolani, F.M. (2012), "Progressive collapse and robustness of steel framed structures", Proceedings of the 11th International Conference on Computational Structures Technology, Stirlingshire, Scotland, month.
- Formisano, A., Landolfo, R. and Mazzolani, F.M. (2015), "Robustness assessment approaches for steel framed structures under catastrophic events", Comput. Struct., 147, 216-228. https://doi.org/10.1016/j.compstruc.2014.09.010
- Fu, F. (2010), "3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings - Parametric study", Eng. Struct., 32(12), 3974-3980. https://doi.org/10.1016/j.engstruct.2010.09.008
- Gerasimidis, S. (2014), "Analytical assessment of steel frames progressive collapse vulnerability to corner column loss", J. Const. Steel Res., 95, 1-9. https://doi.org/10.1016/j.jcsr.2013.11.012
- Gerasimidis, S. and Baniotopoulos, C. (2015), "Progressive collapse mitigation of 2D steel moment frames: assessing the effect of different strengthening schemes", Stahlbau, 84(5), 324-331. https://doi.org/10.1002/stab.201510261
- Gerasimidis, S., Deodatis, G., Kontoroupi, T. and Ettouney, M. (2014), "Loss-of-stability induced progressive collapse modes in 3D steel moment frames", Struct. Infrastr. Eng., 11(3), 334-344. https://doi.org/10.1080/15732479.2014.885063
- Grecea, D., Dinu, F. and Dubina, D. (2004), "Performance criteria for MR steel frames in seismic zones", J. Const. Steel Res., 60(3-5), 739-749. https://doi.org/10.1016/S0143-974X(03)00140-8
- GSA (2003), Progressive Collapse Analysis and Guidelines for New Federal Office Buildings and Major Modernization Projects.
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Const. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., Int. J., 17(3), 215-236. https://doi.org/10.12989/scs.2014.17.3.215
- Hayes, J., Woodson, S., Pekelnicky, R., Poland, C., Corley, W. and Sozen, M. (2005), "Can strengthening for earthquake improve blast and progressive collapse resistance?", J. Struct. Eng., 131(8), 1157-1177. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1157)
- Izzudin, B., Vlassis, A., Elghazouli, A. and Nethercot, D. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
- Jahromi, H. (2009), "Progressive collapse of building structures - Influence of membrane action in floor slabs", M.Sc. Dissertation; Imperial College London, London, UK.
- Khandelwal, K., El-Tawil, S., Kunnath, S. and Lew, H. (2008), "Macromodel-Based Simulation of Progressive Collapse: Steel Frame Structures", J. Struct. Eng., 137(7), 1070-1078.
- Kim, T. and Kim, J. (2009), "Collapse analysis of steel moment frames with various seismic connections", J. Const. Steel Res., 65, 1316-1322. https://doi.org/10.1016/j.jcsr.2008.11.006
- Lalani, M. and Shuttleworth, E.P. (1990), "The ultimate state of offshore platforms using reserve and residual strength principles", Proceedings of the 22nd Offshore Technology Conference, Houston, TX, USA, May.
- Lu, D., Cui, S., Song, P. and Chen, Z. (2012), "Robustness assessment for progressive collapse of framed structures using pushdown analysis method", Int. J. Reliab. Saf., 6(1-3), 15-37. https://doi.org/10.1504/IJRS.2012.044293
- Ruth, P., Marchand, K. and Williamson, E. (2006), "Static equivalency in progressive collapse alternate path analysis: Reducing conservatism while retaining structural integrity", J. Perf. Constr. Fac., 20(4), 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
- Starossek, U. and Haberland, M. (2008), "Approaches to measures of structural robustness", Proceedings of IABMAS'08, 4th International Conference on Bridge Maintenance, Safety and Management, Seoul, Korea, July.
- Tsai, M., and Lin, B. (2009), "Dynamic amplfication factor for progressive collapse resistance analysis of a RC building", Struct. Des. Tall Sp. Build., 18(5), 469-486. https://doi.org/10.1002/tal.449
- Tartaglia, R., D'Aniello, M. and Landolfo, R. (2016), "Nonlinear performance of extended stiffened end plate bolted beam-to-column joints subjected to column removal", Op. Civ. Eng. J.
- Tenchini, A., D'Aniello, M., Rebelo, C., Landolfo, R., da Silva, L.S. and Lima, L. (2014), "Seismic performance of dual-steel moment resisting frames", J. Const. Steel Res., 101, 437-454. https://doi.org/10.1016/j.jcsr.2014.06.007
- USDoD (2005), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
- USDoD (2009), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
- USDoD (2013), United Facilities Criteria (UFC) - Design of buildings to resist progressive collapse.
- Xu, G. and Ellingwood, B. (2011), "Probabilistic assessment of pre-Northridge steel moment resisting frames", J. Struct. Eng., 137, 925-934. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000403
Cited by
- Numerical study on a fully-prefabricated damage-tolerant beam to column connection for an earthquake-resilient frame vol.159, 2018, https://doi.org/10.1016/j.engstruct.2018.01.011
- Parametric finite element analyses on flush end-plate joints under column removal vol.137, 2017, https://doi.org/10.1016/j.jcsr.2017.06.012
- Effects of Postelastic Stiffness Ratio on Dynamic Increase Factor in Progressive Collapse vol.31, pp.6, 2017, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001109
- Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis vol.115, 2017, https://doi.org/10.1016/j.tws.2017.02.006
- Effects of damping ratio on dynamic increase factor in progressive collapse vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.677
- Seismic design of extended stiffened end-plate joints in the framework of Eurocodes vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.09.017
- Full strength extended stiffened end-plate joints: AISC vs recent European design criteria vol.159, 2018, https://doi.org/10.1016/j.engstruct.2017.12.053
- Study on Structural Robustness of Isolated Structure Based on Seismic Response vol.8, pp.9, 2018, https://doi.org/10.3390/app8091686
- A New Rate-Dependent Constitutive Model of Superelastic Shape Memory Alloys and Its Simple Application in a Special Truss Moment Frame Simulation vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/1634702
- Numerical Study on Moment Resisting Frames under Monotonic and Cyclic Loads vol.763, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.763.625
- Assessment of Progressive Collapse Resistance of Steel Structures with Moment Resisting Frames vol.9, pp.1, 2019, https://doi.org/10.3390/buildings9010019
- Consideration of second-order effects on plastic design of steel moment resisting frames pp.1573-1456, 2019, https://doi.org/10.1007/s10518-019-00573-9
- Seismic Behaviour of Strap-Braced LWS Structures: Shake Table Testing and Numerical Modelling vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012032
- Influence of Dissipative Joints on the Behaviour of Steel MRFs: FREEDAM vs Equal-Strength Bolted Joints vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012037
- Preliminary Finite Element Analyses on the Experimental Mock-Up Frames of FREEDAM Research Project vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012038
- Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal vol.11, pp.1, 2017, https://doi.org/10.2174/1874149501711010369
- A method to evaluate the risk-based robustness index in blast-influenced structures vol.12, pp.1, 2016, https://doi.org/10.12989/eas.2017.12.1.047
- Simplified criteria for finite element modelling of European preloadable bolts vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.643
- Ultimate Performance of External End-plate Bolted Joints Under Column Loss Scenario Accounting for the Influence of the Transverse Beam vol.12, pp.0, 2016, https://doi.org/10.2174/1874836801812010132
- Finite element simulations on the ultimate response of extended stiffened end-plate joints vol.27, pp.6, 2018, https://doi.org/10.12989/scs.2018.27.6.727
- Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate vol.28, pp.2, 2016, https://doi.org/10.12989/scs.2018.28.2.139
- The use of steel rbs to increase ductility of wooden beams vol.169, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2018.05.024
- Numerical investigation of semi-rigid connection ultimate capacity vol.71, pp.4, 2016, https://doi.org/10.1590/0370-44672018710031
- Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action vol.30, pp.3, 2019, https://doi.org/10.12989/scs.2019.30.3.253
- Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections vol.36, pp.4, 2020, https://doi.org/10.12989/scs.2020.36.4.427
- An Overview of Progressive Collapse Behavior of Steel Beam-to-Column Connections vol.10, pp.17, 2016, https://doi.org/10.3390/app10176003
- Influence of the P-Delta Effect on the Design of Steel Moment Resisting Frame in Seismic Areas vol.873, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.873.33
- Progressive collapse of regular- and irregular-plan concrete structures in an earthquake vol.174, pp.2, 2016, https://doi.org/10.1680/jstbu.18.00138