DOI QR코드

DOI QR Code

Rapid metabolic discrimination between Zoysia japonica and Zoysia sinica based on multivariate analysis of FT-IR spectroscopy

FT-IR스펙트럼 데이터의 다변량통계분석 기반 들잔디와 갯잔디의 대사체 수준 신속 식별 체계

  • Yang, Dae-Hwa (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Ahn, Myung Suk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Ok-Cheol (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Song, In-Ja (National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ko, Suk-Min (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Jeon, Ye-In (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Hong-Gyu (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Sun, Hyeon-Jin (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kwon, Yong-Ik (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kim, Suk Weon (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Hyo-Yeon (Faculty of Biotechnology, Jeju National University)
  • 양대화 (제주대학교 아열대원예산업연구소) ;
  • 안명숙 (한국생명공학연구원 생물자원센터) ;
  • 정옥철 (제주대학교 아열대원예산업연구소) ;
  • 송인자 (한국생명공학연구원 국가연구안전관리사업본부) ;
  • 고석민 (제주대학교 아열대원예산업연구소) ;
  • 전예인 (한국생명공학연구원 생물자원센터) ;
  • 강홍규 (제주대학교 아열대원예산업연구소) ;
  • 선현진 (제주대학교 아열대원예산업연구소) ;
  • 권용익 (제주대학교 아열대원예산업연구소) ;
  • 김석원 (한국생명공학연구원 생물자원센터) ;
  • 이효연 (제주대학교)
  • Received : 2016.04.06
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

This study aims to establish a system for the rapid discrimination of Zoysia species using metabolite fingerprinting of FT-IR spectroscopy combined with multivariate analysis. Whole cell extracts from leaves of 19 identified Zoysia japonica, 6 identified Zoysia sinica, and 38 different unidentified Zoysia species were subjected to Fourier transform infrared spectroscopy (FT-IR). PCA (principle component analysis) and PLS-DA (partial least square discriminant analysis) from FT-IR spectral data successfully divided the 25 identified turf grasses into two groups, representing good agreement with species identification using molecular markers. PC (principal component) loading values show that the $1,100{\sim}950cm^{-1}$ region of the FT-IR spectra are important for the discrimination of Zoysia species. A dendrogram based on hierarchical clustering analysis (HCA) from the PCA and PLS-DA data of turf grasses showed that turf grass samples were divided into Zoysia japonica and Zoysia sinica in a species-dependent manner. PCA and PLS-DA from FT-IR spectral data of Zoysia species identified and unidentified by molecular markers successfully divided the 49 turf grasses into Z. japonica and Z. sinica. In particular, PLS-DA and the HCA dendrogram could mostly discriminate the 47 Z. japonica grasses into two groups depending on their origins (mountainous areas and island area). Considering these results, we suggest that FT-IR fingerprinting combined with multivariate analysis could be applied to discriminate between Zoysia species as well as their geographical origins of various Zoysia species.

본 연구에서는 FT-IR 스펙트럼 분석을 통해 한국에서 자생하는 Zoysia 속인 들잔디(Zoysia japonica)와 갯잔디(Zoysia sinica)의 전세포추출 시료로부터 대사체 수준에서 신속한 식별체계를 확립하고자 하였다. 이를 위해 기준라인으로 분자마커를 이용해 동정이 완료된 들잔디와 갯잔디 시료를 FT-IR 분석에 사용하였으며, 제주도와 전라도에서 수집된 미동정 잔디들을 기준라인과 비교분석하기 위해 FT-IR 분석에 사용하였다. 기준라인 들잔디와 갯잔디 시료로부터 확보된 FT-IR 스펙트럼 데이터의 PCA (principal component analysis)와 PLS-DA (partial least square discriminant analysis) 분석 결과 각 기준라인은 들잔디 및 갯잔디 종에 따라 뚜렷하게 식별되었다. 들잔디와 갯잔디 시료 사이에서 가장 큰 PC loading value값을 보인 부위는 $1,100{\sim}950cm^{-1}$였다. 이 부위는 carbohydrates 계열의 화합물들의 질적, 양적 정보를 반영하는 부위로 이 계열의 화합물의 양적, 질적 차이가 들잔디, 갯잔디의 대사체 수준 구분에 중요한 역할을 하고 있음을 알 수 있었다. 기준라인 들잔디와 갯잔디 시료집단에 미동정된 잔디 시료 집단을 추가하여 PCA와 PLS-DA 분석한 결과, 일차적으로 들잔디와 갯잔디로 구분이 이루어졌으며 미동정 집단은 모두 들잔디 그룹내에 분포하였다. 특히, HCA (hierarchical clustering analysis) dendrogram 분석 결과에서 동정 및 미동정 들잔디 시료들은 모두 수집지 특성에 따라 국내 국립공원의 고산지대와 국내 섬지역 해안가의 저지대로 별도의 소그룹을 형성하였다. 따라서, 본 연구 결과에서 확립된 FT-IR 스펙트럼 분석법은 한국 전역에 자생하는 들잔디와 갯잔디의 신속한 종 식별뿐만 아니라 수집 지역의 특성에 따라 대사체 수준에서의 유연관계를 규명하는데 활용 가능할 것으로 기대된다.

Keywords

References

  1. Ahn MS, Min SR, Jie EY, So EJ, Choi SY, Moon BC, Kang YM, Park SY, Kim SW (2015) Rapid comparison of metabolic equivalence of standard medicinal parts from medicinal plants and their in vitro-generated adventitious roots using FT-IR spectroscopy. J Plant Biotechnol 42:257-264 https://doi.org/10.5010/JPB.2015.42.3.257
  2. Christians N (1998) Fundamentals of turfgrass management, Ann Arbor Press, Chelsea, MI.
  3. Chung SJ, Park SJ, Choi YI, Kim IK, Lee KY, Kim HJ, Lee GJ (2013) SCAR markers were developed to identify zoysiagrass mutants exhibiting fine leaf characteristics. CNU J Agr Sci 40:1-5
  4. D'Souza L, Devi P, Shridhar MPD and Naik CG. 2008. Use of Fourier Transform Infrared (FTIR) Spectroscopy to Study Cadmium-Induced Changes in PadinaTetrastromatica (Hauck). Anal Chem Insights 3:135-143
  5. Dumas P, Miller LM (2003) The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spectrosc 32:3-21 https://doi.org/10.1016/S0924-2031(03)00043-2
  6. Fiehn O, Kopka J, Drmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161 https://doi.org/10.1038/81137
  7. Hyun YH, Choi BJ, Kim YJ, Joo YK (2012) Analysis of Research Trend on Zoysiagrass (Zoysia spp.) Asian J. Turfgrass Sci 26(2):89-95
  8. Kang BC, Namkung Y, Shin HK (1999) Analysis of the genetic variation in Anyang Joonggi and development of Anyang Joonggi specific DNA marker. Kor J Hort Sci Technol 17:197
  9. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246-250 https://doi.org/10.1007/s00299-004-0811-1
  10. Kim SW, Cho SH, Chung H, Liu JR (2007) Genetic discrimination between Catharanthus roseus cultivars by multivariate analysis of fourier transform infrared spectroscopy data. J Plant Biotechnol 34:201-205 https://doi.org/10.5010/JPB.2007.34.3.201
  11. Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR (2009) Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol Rep 3:87-93 https://doi.org/10.1007/s11816-008-0078-z
  12. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255-265
  13. Kwon YK, Kim SW, Seo JM, Woo TH, Liu JR (2011) Prediction and discrimination of taxonomic relationship within Orostachys species using FT-IR spectroscopy combined by multivariate analysis. J Plant Biotechnol 38:9-14 https://doi.org/10.5010/JPB.2011.38.1.009
  14. Kwon YK, Ahn MS, Park JS, Liu JR, In DS, Min BW, Kim SW (2014) Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J Ginseng Res 38:52-58 https://doi.org/10.1016/j.jgr.2013.11.006
  15. Li, RF, Wei JH, Wang HZ, He J, Sun ZY (2006) Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Plant Cell Tiss Org 85:297-305 https://doi.org/10.1007/s11240-006-9080-8
  16. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A (2010) Olive fruit growth and ripening as seen by vibrational spectroscopy. J Agric Food Chem 58:82-87 https://doi.org/10.1021/jf902509f
  17. Parker FS. 1983. Applications of infrared, raman and resonance raman spectroscopy in biochemistry, Plenum Press, New York, P. 527
  18. Sun HJ, Song IJ, Bae TW, Lee HY (2010) Recent development in biotechnological improvement of Zoysia japonica Steud. J Plant Biotechnol 37:400-407 https://doi.org/10.5010/JPB.2010.37.4.400
  19. Song SY, Ha TJ, Jang KC, Kim IJ, Kim SW (2012) Establishment of rapid discrimination system of leguminous plants at metabolic level using FT-IR spectroscopy with multivariate analysis. J Plant Biotechnol 39:121-126 https://doi.org/10.5010/JPB.2012.39.3.121
  20. Song SY, Jie EY, Ahn MS, Lee IH, Nou IS, Min BW, Kim SW (2014) Fourier Transform Infrared (FT-IR) spectroscopy of genomic DNA to discriminate F1 progenies from their paternal lineage of Chinese cabbage (Brassica rapa subsp. pekinensis). Mol Breeding 33:453-464 https://doi.org/10.1007/s11032-013-9963-4
  21. Trygg J, Holmes E, Londstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:467-479
  22. Turgeon AJ. 1985. Turgrass Management, Rev Ed, Raston Publishing, Raston, Virginia
  23. Wolkers WF, Oliver AE, Tablin F, Crowe JH (2004) A fourier transform infrared spectroscopy study of sugar glasses. Carb Res 339:1077-85 https://doi.org/10.1016/j.carres.2004.01.016
  24. Yang GM, Ahn BJ, Choi JS (1995) Identification of native zoysiagrasses (Zoysia spp.) using morphological characteristics and esterase isozymes. J Kor Soc Hort Sci 36(2):240-247
  25. Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-Cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775-82 https://doi.org/10.1021/es0346680
  26. Yu TY, Yeam DY, Kim, YJ, Kim SJ (1974) Morphological studies on Korean lawn grasses (Zoysia spp.). Jour Kor Soc Hort Sci 15(1):79-91