DOI QR코드

DOI QR Code

Genetic variation of halophyte New Zealand spinach (Tetragonia tetragonioides) accessions collected in Korea using an AFLP marker

AFLP 마커를 이용한 국내수집 염생식물 번행초 유전다양성 평가

  • Jeon, Yongsam (Department of Horticulture, Chungnam National University) ;
  • Jin, Yong-Tae (Department of Horticulture, Chungnam National University) ;
  • Choi, Seo-Hee (Department of Horticulture, Chungnam National University) ;
  • Park, Nuri (Department of Horticulture, Chungnam National University) ;
  • Kim, In-Kyung (Department of Horticulture, Mokpo National University) ;
  • Lee, Ka Youn (Korea Institute of Oriental Medicine) ;
  • Choi, Jong-Jin (Flower Research Institute, Chungnam Agricultural Research & Extension Service) ;
  • Lee, Geung-Joo (Department of Horticulture, Chungnam National University)
  • Received : 2016.04.29
  • Accepted : 2016.05.22
  • Published : 2016.06.30

Abstract

This study was conducted to investigate the potential use of New Zealand spinach (Tetragonia tetragonioides) as a new vegetable crop which will be cultivated in salt-affected soils such as reclaimed areas. New Zealand spinach ecotypes native to Korea were collected across the Southern, Western and Eastern seashore regions of the Korean peninsula, among which fifty-five accessions were later further propagated and evaluated genetically by using an AFLP (amplified fragment length polymorphism) marker. Based on the AFLP analysis performed to uncover the genetic diversity of the collected ecotypes, enzymatic cleavage of the extracted DNA was implemented based on 12 EcoRI and MseI combinations. A total of 1,279 alleles (107 alleles per EcoRI and MseI enzyme combination) were successfully amplified, among which 62 alleles per enzyme combination were polymorphic (58%). The AFLP analysis indicated that the rate of genetic dissimilarity was 29% among the New Zealand spinach collections, which were clustered into the 7 genetic diversity group. This is the first report on the genetic variation in the genus Tetragonia, and the basic information can be applied to select parental lines for enhancing the segregation spectrum of the new halophytic vegetable plant grown in salt-affected areas.

본 연구는 국내 동, 서 및 남해안 바닷가 근처 사구지역에서 자생하는 번행초 55개체를 수집하여 AFLP 마커시스템을 적용하고 이들 유전자원들간의 유전다양성 차이를 알아보기 위하여 실시하였다. 우선 전체 게놈의 특이적 부위를 절단하기 위하여 제한효소로 EcoRI과 MseI 12개 조합을 활용하였고, 그 결과 총 1,279 절편을 확보할 수 있었다. 이 결과는 제한효소 조합당 평균 107개의 절편이 생산된 것으로 이 중 평균 62개(약 58%)가 유전자원간에 다형성을 나타냈다. 이와 같이 유전자원간에 다형성을 보인 게놈 절편을 대상으로 유전다양성을 분석한 결과 조사된 55개체 번행초 유전자원 집단은 29%의 유전적 차이를 보이는 것을 알 수 있었다. 또한 군집분석을 통해 유전적 차이를 보이는 그룹을 분류한 결과 국내 자생 번행초 유전자원은 총 7개의 집단으로 나누어짐을 알 수 있었다. 본 연구에서 국내외 최초의 번행초 유전 다양성 평가 정보는 향 후 품종 육성을 위한 교배친의 선발에 적용하여 다양한 유전적 차이를 보이는 분리집단을 확보하는 데 활용이 가능할 것으로 생각된다.

Keywords

References

  1. Aoki T, Takagi K, Hirata T, Suga T (1982) Two naturally occurring acyclicditerpene and norditerpene aldhydes from Tetragonia tetragonoides. Phytochemistry 21(6):1361-1363 https://doi.org/10.1016/0031-9422(82)80142-8
  2. Arroyo-Garcia R, Martinez-Zapater JM, Fernandes Prieto JA (2001) AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica 122:155-164 https://doi.org/10.1023/A:1012654514381
  3. Blears MJ, de Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Indian J Microbiol Biotechnol 21:99-114 https://doi.org/10.1038/sj.jim.2900537
  4. Choi HJ, Kang JS, Jeong YK, Choi YW, Joo WH (2008) Inhibitory activity on the diabetes related enzymes of Tetragonia tetragonioides. Korean J Biotechnol Bioeng 23(5):419-424
  5. Grubben GJH, Denton OA (2004) Plant resources of tropical Africa 2. Vegetables. Backhuys Publishers, Wageningen, The Netherlands
  6. Kang SY, Lee GJ, Lim KB, Lee HJ, Park IS, Chung SJ, Kim JB, Kim DS, Rhee HK (2008) Genetic diversity among Korean bermudagrass ecotypes characterized by morphological and cytological and molecular approaches. Mol Cell 25:163-171
  7. Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genetics Newsletter 15:150-152
  8. Kim JH, SS Park, CK Song (2008) Cultivation limit of Vitex rotundifloia, Tetragonia tetragonoides and Glehnia littoralis at coastal area and physiological vitality of RAW 264.7 cell and HL-60 cell. Korean J Med Crop Sci 16(1):44-50
  9. Kim SK, Kim IK, Lee GJ (2011) Growth responses of New Zealand spinach [Tetragonia tetragonioides (Pall.) Kuntze] to different soil texture and salinity. CNU J Agric Sci 38:631-639
  10. Kim IK, Lee KY, Kim SK, Kim BW, Choi WY, Lee GJ (2012) Preliminary screening of leafy vegetable New Zealand spinaches (Tetragonia tetragonioides) native to Korea. CNU J Agric Sci 39:515-523 https://doi.org/10.7744/cnujas.2012.39.4.515
  11. Kumar S, Tamura K, Dudley J, Nei M (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599 https://doi.org/10.1093/molbev/msm092
  12. Kurukulasuriya P, Rosenthal S (2003) Climate change and agriculture. A review of impacts and adaptations. Climate change series No.91. The World Bank Environment Department
  13. Muse SV, Liu KJ (2005) Powermarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129 https://doi.org/10.1093/bioinformatics/bti282
  14. Myeong HH, Lee JS, Jeon JY, Song MS (2011) Study on creation method of green space for port ecosystem using the halophytes. Kor J Soc Coastal Ocean Engineers 23(1):50-56 https://doi.org/10.9765/KSCOE.2011.23.1.050
  15. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet 89:583-590
  16. Rohlf FJ (1989) NTSYS-pc numerical taxonomy and multivariate analysis system, version 1.50. Exeter Publications. New York, USA
  17. Sampaio BL, Bara MTF, Ferri PH, Santos SC, Paula JR (2011) Influence of environmental factors on the concentration of phenolic compounds in leaves of Lafoensia pacari. Revista Brasileira de Farmacognosia 21:1127-1137 https://doi.org/10.1590/S0102-695X2011005000177
  18. Sathyanarayana N, Leelambika M, Mahesh S, Jaheer M (2011) AFLP assessment of genetic diversity among Indian Mucuna accessions. Physiol Mol Biol Plants 17:171-180 https://doi.org/10.1007/s12298-011-0058-6
  19. Zhang L, Jeon YJ, Kang SY, Lee GJ (2012) Genetic diversity of natural and artificial populations of model grass Brachypodium species evaluated by AFLP markers. Hort. Environ. Biotechnol 53:143-150 https://doi.org/10.1007/s13580-012-0104-5