DOI QR코드

DOI QR Code

Comparison of temperature measurements methods to investigate the causes of deformation of packaging materials during microwave heating

전자레인지의 가열조리 시 포장재의 열변형 원인 규명을 위한 온도 측정 방법 비교

  • Yoon, Chan Suk (R&D team, Agency for Korea National Food Cluster) ;
  • Lee, Hwa Shin (Korea Branch Office, Fraunhofer Institute of Process Engineering and Packaging) ;
  • Pfeiffer, Thomas (Fraunhofer Institute of Process Engineering and Packaging) ;
  • Cho, Ah Reum (Packaging Center, CJ Cheiljedang Co., Ltd.) ;
  • Moon, Sang Kwon (Packaging Center, CJ Cheiljedang Co., Ltd.) ;
  • Lee, Keun Taik (Korea Branch Office, Fraunhofer Institute of Process Engineering and Packaging)
  • 윤찬석 (국가식품클러스터지원센터 연구개발팀) ;
  • 이화신 (독일 프라운호퍼 공정공학 및 포장연구소 한국지소) ;
  • 토마스파이퍼 (독일 프라운호퍼 공정공학 및 포장연구소) ;
  • 조아름 ((주)CJ제일제당 패키징센터) ;
  • 문상권 ((주)CJ제일제당 패키징센터) ;
  • 이근택 (독일 프라운호퍼 공정공학 및 포장연구소 한국지소)
  • Received : 2015.07.21
  • Accepted : 2016.04.26
  • Published : 2016.06.30

Abstract

To investigate the causes of the thermal deformations of packaging materials when microwave-heating ready-to-eat sauce products packaged in stand-up pouches, patterns of temperature changes were determined using an infra-red thermal imaging camera, a thermo-sensitive tape, and a fiver-optic thermometer. The temperature distributions of spicy chicken sauce and Indian curry samples in a stand-up pouch were found to be uneven during micrewave heating. A sharp increase in the temperature was detected, especially above the filling layers and in the corners of sealing layers of the package. The temperature measurements using an infra-red thermal imaging camera are restricted to the surface, and therefore might underestimate the actual temperature. Using a thermo-sensitive tape, temperature up to $200^{\circ}C$ were measured in the spicy chicken sauce sample showing package deformation. When the temperature is measured using a fiber-optic thermometer, it is crucial to have precise sensor performance to accurately measure the temperature in a narrow hot-spot area of the package. In this experiment, the fiber-optic thermometer was attached to a GaAs crystal sensor, which obtained more sensitive and accurate temperature measurements than those by a convectional sensor.

일부 소스류 제품에 사용된 스탠딩 파우치에서 전자레인지 가열조리 시 열변형이 발견되어 이의 원인을 규명하고자 온도 변화 패턴을 조사하였다. 전자레인지로 포장된 식품을 가열 시 포장재의 온도 변화는 식품 자체의 온도보다 높고 국소적인 온도 측정 기술을 요한다. 공시 시료로 매운맛 닭 소스와 인도카레의 전자레인지 가열 시 포장재와 시료의 온도를 열화상 카메라, 온도센서 테이프 및 광섬유 온도계를 이용하여 측정하였다. 스탠딩 파우치 형태의 포장은 전자레인지 가열 조리 시 내용물의 불균일한 가열이 관찰되어 특정 부위, 특히 액위선 상단과 측면 sealing layer에 열이 집중되는 현상이 발생하였다. 열화상 카메라를 이용한 온도 측정 방법은 식품의 표면 온도를 측정하는 제약이 있고 실제 식품의 온도보다 낮게 측정되는 경향을 보였다. 온도센서 테이프를 이용할 경우 $200^{\circ}C$까지 온도까지 측정되어 전자레인지 가열 과정 중 포장재 변형 현상이 야기될 수 있는 가능성을 확인할 수 있었다. 그리고 전자레인지 가열 시 포장재 표면의 온도 변화를 기존 광섬유 온도계로 측정할 경우 실제 온도보다 낮게 측정되는 결과가 초래되므로, 좁은 범위에서의 hot spot의 온도 변화를 감지할 수 있는 방법으로 GaAS crystal 센서를 사용함으로서 기존 센서보다 더 민감하고 정확한 온도 측정이 가능하였다.

Keywords

References

  1. Ohlsson T, Bengtsson N (2001) Microwave Technology and Foods. Adv Food Nutr Res, 43, 65-140 https://doi.org/10.1016/S1043-4526(01)43003-8
  2. Sumnu G (2001) A review on microwave baking of foods. Int J Food Sci Technol, 36, 117-127 https://doi.org/10.1046/j.1365-2621.2001.00479.x
  3. Schiffmann RF (1997) Microwave Technology; A Half-century of Progress. http://www.foodproductdesign.com/articles/462/462_0597CS.html. Accessed 10. Sept. 2014. Food Product Design, 7, 32-56
  4. Lee KT (2002) Microwave packaging technology. In: Encyclopedia of Packaging Technology, Lee MH et al (Editor), Korea Society of Packaging Science and Technology, Seoul, Korea, p 1069-1082
  5. Yoon CS, Hong SI, Cho AR, Lee HS, Park HW, Lee KT (2015) Analysis of the causes of deformation of packaging materials for ready-to-eat foods after microwave heating. Korean J Food Sci Technol, 47, 63-69 https://doi.org/10.9721/KJFST.2015.47.1.63
  6. Bell DA, Steinke LW (1991) Evaluating structure and texture effects of methylcellulose gums in microwave baked cakes. Cereal Foods World, 36, 941-944
  7. Lee DS, Yam KL, Piergiovanni L (2008) Microwavable packaging, In: Food Packaging Science and Technology. CRC Press, Boca Raton, USA, p 425-444
  8. Chandrasekaran S, Ramanathan S, Basak T (2011) Microwave material processing-A Review. AIChE J, 58, 330-363
  9. Rozzi NL, Singh RK (2000) The effect of selected salts on the microwave heating of starch solutions. J Food Proc Preserv, 24, 265-273 https://doi.org/10.1111/j.1745-4549.2000.tb00418.x
  10. Mullin J, Bows J (1993) Temperature measurement during microwave cooking. Food Addit Contam, 10, 663-672
  11. Kingston HM, Jassie LB (1986) Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal Chem, 58, 2534-2541 https://doi.org/10.1021/ac00125a038
  12. van de Voort FR, Laureano M, Smith JP, Raghavan GSV (1987) A practical thermocouple for temperature measurement in microwave ovens. Can Inst Food Sci Technol J, 20, 279-284 https://doi.org/10.1016/S0315-5463(87)71200-0
  13. Walkiewicz JW, McGill SL, Moyer LA (1988) Improved grindability of iron ores using microwave energy. Materials Research Society Symposium Proceedings, 124, 297-302
  14. Haque KE (1999) Microwave energy for mineral treatment processes-a brief review. Int J Miner Process, 57, 1-24 https://doi.org/10.1016/S0301-7516(99)00009-5
  15. Knoerzer K, Regier M, Schubert H (2005) Measuring temperature distributions during microwave processing. In: The Microwave Processing of Foods. Schubert H and Regier M (Editor), Woodhead Publishing, Cambridge, UK, p 243-263
  16. Bows J, Joshi K (1992) Infrared imaging feels the heat in microwave ovens. Physics World. Institute of Physics Publishing Ltd., Bristol and Philadelphia, p 21-22
  17. Bengtsson NE, Lycke E (1969) Experiments with a heat camera for recording temperature distribution in foods during microwave heating. J Microwave Power, 4, 48-54 https://doi.org/10.1080/00222739.1969.11688702
  18. Knoerzer K, Regier M, Hardy EH, Schuchmann HP, Schubert H (2009) Simultaneous microwave heating and three-dimensional MRI temperature mapping. Innovative Food Sci and Emerging Technol, 10, 537-544 https://doi.org/10.1016/j.ifset.2009.05.013
  19. Byon C, Choo K, Kim SJ (2011) Experimental and analytical study on chip hot spot temperature. Int J Heat and Mass Transfer, 54, 2066-2072 https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.022
  20. Farag S, Sobhy A, Akyel C, Doucet J, Chaouki J (2012) Temperature profile prediction within selected materials heated by microwaves at 2.45 GHz. Appl Thermal Eng, 36, 360-369 https://doi.org/10.1016/j.applthermaleng.2011.10.049
  21. Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing-A review. Food Res Int, 52, 243-261 https://doi.org/10.1016/j.foodres.2013.02.033
  22. Campanone LA, Zaritzky NE (2005) Mathematical analysis of microwave heating process. J Food Eng, 69, 359-368 https://doi.org/10.1016/j.jfoodeng.2004.08.027
  23. Jeong JY, Lee ES, Choi JH, Choi YS, Yu LH, Lee SK, Lee CH, Kim CJ (2009) Cooking pattern and quality properties of ground pork patties as affected by microwave power levels. Korean J Food Sci Ani Resour, 29, 82-90 https://doi.org/10.5851/kosfa.2009.29.1.82
  24. Datta AK (1990) Heat and mass transfer in the microwave processing of food. Chemical Eng Prog, 86, 47-53
  25. Cuccurullo G, Berardi PG, Carfagna R, Pierro V (2002) IR temperature measurements in microwave heating. Infrared Phys Techn, 43, 145-150 https://doi.org/10.1016/S1350-4495(02)00133-0
  26. Nuechter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis-a critical technology overview. Green Chem, 6, 128-141 https://doi.org/10.1039/B310502D
  27. Datta AK, Rakesh V (2013) Principles of Microwave Combination Heating. Compr Rev Food Sci F, 12, 24-39 https://doi.org/10.1111/j.1541-4337.2012.00211.x
  28. Geedipalli SSR, Rakesh V, Datta AK (2007) Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J Food Eng, 82, 359-368 https://doi.org/10.1016/j.jfoodeng.2007.02.050
  29. James SJ (1993) Factors affecting the microwave heating of chilled foods. Food Sci Technol Today, 7, 28-36
  30. Koskiniemi CB, Truong VD, Simunovic J, McFeeters RF (2011) Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system. J Food Eng, 105, 149-160 https://doi.org/10.1016/j.jfoodeng.2011.02.019
  31. Venkatesh MS, Raghavan GSV (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosys Eng, 88, 1-18 https://doi.org/10.1016/j.biosystemseng.2004.01.007

Cited by

  1. 전자레인지 서셉터 패키징 기술개발 현황 vol.26, pp.3, 2016, https://doi.org/10.20909/kopast.2020.26.3.133