DOI QR코드

DOI QR Code

Effect of Medicinal Herb Composites on Antioxidative and Cognition-Enhancing Activities in Rats

생약복합물이 흰쥐의 체내에서 항산화 및 인지개선활성에 미치는 영향

  • Kang, Jin-Soon (Dept. of Food & Nutrition, International University of Korea)
  • 강진순 (한국국제대학교 식품영양학과)
  • Received : 2016.04.18
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

The purpose of this experiment was designed to investigate the effects of medicinal herbs (MH) extracts on dementia induced by trimethyltin chloride (TMT) in rats. Six-week-old male Sprague-Dawley rats were randomly divided into five groups; normal group (group 1), control group (group 2), MH extracts group (250, 500 mg/kg) (group 3, group 4) and positive control group (tacrine group, group 5). In the control group to induce dementia, a 2.5 mg/kg of TMT intraperitoneal injection was used for 14 days (1 per day) in the rats. In the MH extracts group 250 mg/kg and 500 mg/kg of MH extracts were medicated in an oral inoculation for 20 days (1 per day). After 30 minutes, a 2.5 mg/kg of TMT intraperitoneal injection, which causes dementia, was used for 14 days (1 per day). In the positive control group (Tacrine group) 10 mg/kg of Tacrine, the dementia treatment, was medicated in an oral inoculation. After 30 mintues, 1 mg/kg of TMT intraperitoneal injection, which causes dementia, was used for 14 days (1 per day). The present author observed the passive avoidance performance test, and memory ability test (Y maze test), the values of MDA, acetlycholinesterase (AchE) activity in the brain and antioxidant enzyme in serum. MH extracts significantly improved memory of AD model rats in the Y-maze test, and also significantly improved memory of AD model rats in the passive avoidance test. MH extracts significantly reduced AChE activity, and significantly increased the SOD level, but not catalase and MDA. From the results above, MH extracts is thought to be effective in the improvement of antioxidant enzymes and memory ability.

인지기능 활성을 가진 생약복합물을 선정하여 최적조성물을 조제한 다음, 생약복합물의 첨가비율을 달리하여 치매유도 동물모델에서 항산화 효과와 인지기능 개선을 확인한 결과는 다음과 같다. 1. 20일간 사육한 흰쥐 혈청의 GOT, GPT, creatinine 및 BUN 활성을 측정한 결과, 생약복합물을 투여한 군(3, 4군)이 정상군(1군)에 비해 GOT 농도는 감소하였고, GPT 농도와 Creatinine 농도는 유의적인 차이는 없었다. BUN 농도는 정상군(1군)에 비해 생약복합물을 투여한 군(3, 4군)이 유의적으로 감소하였다. 2. 혈액 중의 총 콜레스테롤과 HDL-cholesterol은 유의적인 차이가 없었으나, 중성지방은 전군에서 정상군(1군)에 비해 치매유발군인 2군이 낮았고, 생약복합물 투여군(3, 4군), 치매치료군(5군)은 가장 낮았으며, 이들 군 간에는 유의적인 차이는 없었다. 3. 혈액 SOD 활성은 정상군(1군), TMT 투여군(2군) 및 tacrine 투여군(5군) 간에는 유의적인 차이가 없었으나, 생약복합물 투여군(3, 4군)이 다소 높아 유의적인 차이를 나타내었다(p<0.05). MDA 함량은 정상군인 1군과 치매치료군인 5군이 치매유발군인 2군과 생약복합물 투여군(3, 4군)에 비해 유의적으로 높았으며, 2, 3, 4군 간에는 유의적인 차이가 없었다. 4. AChE 활성은 TMT로 치매를 유발한 2군이 가장 높았으며, 치매치료군(5군)은 정상군(1군)의 수준으로 가장 낮게 나타났다. 그리고 생약복합물을 투여한 3군, 4군에서는 유의적 차이는 없으나, TMT로 치매를 유발한 2군보다는 유의적으로 감소하였고(p<0.05), 치매치료군인 5군보다는 다소 높게 나타났다. 5. 단기기억능력을 시험하기 위한 Y-maze를 실시한 결과는 Y-maze의 각 arm을 통과한 총 횟수는 전군에서 유의적인 차이는 없었다. 교차행동력은 TMT 투여군인 2군이 가장 낮았으며, 치매치료제인 tacrine을 투여한 5군이 가장 높아 5군(tacrine 투여)은 TMT 투여군인 2군에 비해 약 125% 현저한 기억력 증가를 보였다. 이에 반해 생약복합물 투여한 2, 3군은 정상군과 유의적인 차이가 없었으나, TMT 투여군인 2군에 비해 각각 117.32%와 120.38% 수준으로 기억력 증가를 보였다. 장기기억능력을 시험하기 위한 수동회피실험의 결과, TMT 투여군(2군)은 전군에서 가장 낮았으나, 생약복합물 중, 고용량 투여군(3, 4군) 및 tacrine 투여군은 증가하였고, 특히 고용량(4군)에서 유의성 있는 증가를 나타내어(p<0.05) 정상군에 가깝게 회복시켜 주는 경향을 보여 주었다. 이상의 결과를 통하여 생약복합물은 치매 유발 동물모델의 항산화능의 저하를 억제하고, AChE 활성을 억제하여 ACh의 활성을 촉진하므로 장 단기 기억능력의 회복 및 개선효과를 확인할 수 있었다. 그러나 향후 생약복합물의 농도에 따른 첨가군을 확대하여 인지기능 개선에 가장 효과적인 최적농도를 도출하는 연구가 계속 진행되어야 할 것으로 사료된다.

Keywords

References

  1. Byun SN. 2010. Effects of mixed extracts of Chenwhangbosimdan and Curcuma longa L. on memory and antioxidant enzyme activities in intracerebroventricular amyloid ${\beta}$-injected Alzheimer's disease model rat. PhD Thesis, Kyung Hee Univ. Seoul. Korea
  2. Cho YJ, Hou WN. 2005. Effect of dietary Bong-ip, Gam-chei, Sol-ip and Dang-gi on serum composition in rats. Korean J Food Culture 20:123-129
  3. Choi GN. 2011. Anti-amnestic effects of quercetin, and physiological effect of green tea and garlic. MS Thesis, Gyung sang national Univ. GyungNam. Korea
  4. Choi SJ, Kim MJ, Heo HJ, Kim JK, Jun WJ, Kim HK, Kim EK, Kim MO, Choi HY, Hwang HJ, Kim YJ, Shin DH. 2009. Ameliorative effect of 1,2-benzene dicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity. Amyloid 16:15-24 https://doi.org/10.1080/13506120802676997
  5. Chung YK, Heo HJ, Kim EK, Kim HK, Huh TL, Lim Y, Kim SK, Shin DH. 2001. Inhibitory effect of ursolic acid purified from Oiganum majorana L on the acetylcholinesterase. Mol Cells 11:137-143
  6. Defeudis FV, Drieu K. 2000. Ginkgo biloba extract (EGb 761) and CNS functions: Basic studies and clinical applications. Curr Drug Targets 1:25-58 https://doi.org/10.2174/1389450003349380
  7. Dierckx RI, Vandewoude MF. 2008. Donepezil-related toxic hepatitis. Acta Clin Belg 63:339-342 https://doi.org/10.1179/acb.2008.066
  8. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO. 1989. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 262:551-556
  9. Fayuk D, Yakel JL. 2004. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol Pharmacol 66: 658-666 https://doi.org/10.1124/mol.104.000042
  10. Feldman RG, White RF, Eriator II. 1993. Trimethyltin encephalopathy. Arch Neurol 50:1320-1324 https://doi.org/10.1001/archneur.1993.00540120035010
  11. Francis PT, Palmer AM, Snape M, Wilcock GK.1999. The cholinergic hypothesis of Alzheimer's disease: A review of progress. J Neurosurg Psychiatry 66:137-147 https://doi.org/10.1136/jnnp.66.2.137
  12. Giacobini E. 2004. Cholinesterase inhibitor: New role and therapeutic alternatives. Pharmacological 50:433-440
  13. Jung SH, Chang KS, Ko GH. 2004. Physiological effects of curcumin extracted by supercritical fluid from turmeric (Curcuma longa L.). Korean J Food Sci Technol 36:317-320
  14. Kang JS. 2010. The effects of vitamin C on the activity of liver enzymes and hepatic damage in rats treated with radiation and aflatoxin $B_1$. Korean J Food & Nutr 23:30-38
  15. Kang SY, Kim SH, Jung KK, Kim TG, Han HM, Huh IH. 1999. The effect of docosahexaenoic acid on the memory loss induced by ibotenic acid or scopolamine in rats. J Toxicol Public Health 15:133-140
  16. Kim JH, Ryu JD, Lee HG, Park JH, Moon GS, Choi HS, Song YO. 2002. Effect of Kimchi on production of free radicals and anti-oxidative enzyme activities in the brain of SAM. J Korean Soc Food Sci Nutr 31:117-123 https://doi.org/10.3746/jkfn.2002.31.1.117
  17. Kim JK, Bae H, Kim MJ, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST, Kim EK, Kim HK, Kim BY, Shin DH. 2009. Inhibitory effect of Poncirus trifoliate on acetylcholinesterase and attenuating acivity against trimethyltin-induced learning and memory impairment. Biosci Biotechnol Biochem 73:1105-1112 https://doi.org/10.1271/bbb.80859
  18. Kim JS, Kim YS, Kim SK, Heor JH, Lee BH, Choi BW, Ryu GS, Park EK, Zee OP, Ryu SY. 2002. Inhibitory effects of some herbal extracts on the acetylcholinesterase (AChE) in vitro. Korean J Pharmacogn 33:211-218
  19. Kim MJ, Choi SJ, Lim ST, Kim HK, Heo HJ, Kim EK, Jun WJ, Choi HY, Kim YJ, Shin DH. 2007. Ferulic acid supplementation prevent trimethyltin-induced cognitive deficits in mice. Biosci Biotechnol Biochem 71:1063-1068 https://doi.org/10.1271/bbb.60564
  20. Kim YS, Kim JS, Kim SK, Heor JH, Lee BE, Ryu SY. 2001. Binding affinity of some herbal extracts on the muscarinic acetylcholine receptor subtype 1 (mAChR-M1). Kor J Pharmacogn 32:219-225
  21. Lee Chun-Lin, Kuo Tzong-Fu, Wang Jyh-Jye, Pan Tzu-Ming. 2007. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid ${\beta}$-infused rat by repressing amyloid b accumulation. J Neurol Res 85: 3171-3182 https://doi.org/10.1002/jnr.21428
  22. Lee MR, Sun BS, Gu LJ, Wang CY, Mo EK, Yang SA, Ly SY, Sung CK. 2008. Effects of white ginseng and red ginseng extract on learning performance and acetylcholinesterase activity inhibition. J Ginseng Res 32:341-346 https://doi.org/10.5142/JGR.2008.32.4.341
  23. Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH. 2012. Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean J Food Sci Technol 44:540-544 https://doi.org/10.9721/KJFST.2012.44.5.540
  24. Marttila RJ, Lorenz H, Rinne UK. 1988. Oxygen toxicity protecting enzymes in Parkinson's disease. J Neurol Sci 88:321-325
  25. Oh MH, Houghton PJ, Whang WK, Cho JH. 2004. Screening of Korean herbal medicines used to improve cognitive for anticholinesterase function activity. Hytomedicine 11:544-548 https://doi.org/10.1016/j.phymed.2004.03.001
  26. Pan R, Qiu S, Lu DX, Dong J. 2008. Curcumin improves learning and memory ability and its neuroprotective mechanism in mice. Chin Med J (Engl) 121:832-839
  27. Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, Lamari FN. 2009. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 198:352-358 https://doi.org/10.1016/j.bbr.2008.11.013
  28. Park CH, Kim SH, Choi W, Lee YJ, Kim JS, Kang SS, Suh YH. 1996. Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med 62:405-409 https://doi.org/10.1055/s-2006-957926
  29. Pratico D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski JQ. 2002. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972-976 https://doi.org/10.1001/archneur.59.6.972
  30. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ. 1997. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N Engl J Med 336:1216-1222 https://doi.org/10.1056/NEJM199704243361704
  31. Shih PH, Chan YC, Liao JW, Wang MF, Yen GC. 2009. Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer's disease. J Nutr Biochem 21:598-605
  32. Silverberg GD, Mayo M, Saul T, Carvalho J, McGuire D. 2004. Novel ventriculo-peritoneal shunt in Alzheimer's disease cerebrospinal fluid biomarkers. Expert Rev Neurother 4:97-107 https://doi.org/10.1586/14737175.4.1.97
  33. Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW. 1994. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA 271:992-998 https://doi.org/10.1001/jama.1994.03510370044030
  34. Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, Norton MC, Welsh-Bohmer KA, Breitner JCS; for the Cache County Study Group. 2004. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Arch Neurol 61:82-88 https://doi.org/10.1001/archneur.61.1.82
  35. Zelman FA, Thienhaus OJ, Bosmann HB. 1988. Superoxide dismutase activity in Alzheimer's disease: Possible mechanism for paired helical filament formation. Brain Res 476:160-165

Cited by

  1. 오미자칠해목 추출물의 과산화수소로 유발된 PC12뇌세포 사멸과 스코폴라민으로 유발된 렛드 동물모델에 대한 개선 효과 vol.33, pp.3, 2020, https://doi.org/10.9799/ksfan.2020.33.3.347