DOI QR코드

DOI QR Code

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Yield of the Black Rice Cultivar 'Shinnongheugchal'

재식밀도 및 시비량 차이가 신농흑찰 품질 및 수량에 미치는 영향

  • Lee, In-Sok (Jeollabuk-do Agricultural Research and Extension Service) ;
  • Lee, Deok-Ryeol (Jeollabuk-do Agricultural Research and Extension Service) ;
  • Cho, Seung-Hyun (Jeollabuk-do Agricultural Research and Extension Service) ;
  • Lee, Song-Yi (Jeollabuk-do Agricultural Research and Extension Service) ;
  • Kim, Kab-Cheol (Jeollabuk-do Agricultural Research and Extension Service) ;
  • Lee, Ki-Kwon (Jeollabuk-do Agricultural Research and Extension Service) ;
  • Song, Young-Ju (Jeollabuk-do Agricultural Research and Extension Service)
  • Received : 2016.03.25
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

The late-maturing black rice cultivar Shinnongheugchal from Jeollabuk-do Agricultural Research and Extension Service was used as the plant material for estimating growth characters, quality and yield from the vegetation period to harvest age. This study was performed to select an optimum combination of nitrogen level and planting density for the maximum yield of Shinnongheugchal. The plant height, number of tillers, and SPAD index were higher when the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level was used at 30 days after transplanting. The heading date for the combination of 70 hills per $3.3m^2$ and 15 kg/10 a nitrogen level, and 80 hills per $3.3m^2$ and 15 kg/10 a nitrogen level was August 22. The heading date for the other combinations was August 21. The combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level yielded the highest number of tillers at 40 days after flowering. Even though the lodging index was increased with increasing nitrogen levels, field lodging did not occur until harvest time. Seed nitrogen concentration in the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level showed a significant difference when compared with the other combinations. The black rice yield varied significantly, and the highest yield was observed in the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level. The yield was significantly correlated with seed nitrogen concentration. The maximum yield was estimated to be 14.67 kg/10 a nitrogen level by using the regression equation. On average, the coloring degree of the black rice was higher at planting density of 70 hills per $3.3m^2$ than at 80 hills per $3.3m^2$. The highest yield of perfect black rice was obtained using the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level. Our findings demonstrate that a nitrogen level of 13-14 kg/10 a can be used to obtain the maximum yield from Shinnongheugchal with yield, cyanidin 3-glucoside content, and perfect black rice yield as the standard.

본 연구는 질소시비량과 재식거리 차이에 따른 신농흑찰의 미질 및 수량 차이를 분석하여 안토시아닌 함량에 변화가 없으면서 최고 수량을 생산할 수 있는 적정 재배기술의 자료를 얻고자 수행하였고 그 결과는 다음과 같다. 1. 출수기는 70주 및 80주 시험구+15 kg 조합에서 8월 22일로 동일하였고 다른 조합에서는 8월 21일로 조사되었다. 출수 후 40일에 경수는 70주 시험구+13 kg시비량 조합에서 가장 높았다. 2. 도복지수는 시비량이 증가할수록 증가하였지만 모든 처리구에서 포장도폭은 발생하지 않았고 병해충도 발생하지 않았다. 3. 질소함량은 잎>종자>줄기 순으로 증가하였고, 줄기 및 잎의 질소함량은 80주 시험구의 평균이 70주보다 조금 높았지만 종자의 질소함량은 70주 시험구가 80주보다 높았다. 종자의 최대 질소 함량은 70주+13 kg 조합에서부터 통계적으로 유의성 있는 증가를 보였다. 4. 수당립수는 70주+13 kg 시비량 조합에서 가장 높았고, 등숙률은 80주+13 kg 시비량 조합에서 가장 높았다. 정현비율은 70주+15 kg 시비량 조합에서 가장 높았고, 천립중은 80주+15 kg 시비량 조합에서 가장 높았으나 통계적으로 큰 차이는 없었다. 5. 현미 수량은 70주 시험구의 평균이 80주 시험구보다 높았고, 70주+13 kg 시비량 조합에서 다른 처리구보다 가장 높은 수량을 보였다. 회귀분석에 의해 최대 수량은 14.67 kg/10a로 추정되었다. 6. 관능평가 결과 착색정도는 70주 시험구가 80주보다 높았지만 C3G는 80주가 더 높았다. 완전착색립 수량은 70주+13 kg 시비량에서 가장 높았다. 7. 그러므로 현미수량, C3G 함량 및 100% 착색립 수량을 기준으로 신농흑찰 최고수량을 위한 최적 질소 시비량은 13~14 kg/10a까지 높일 필요가 있을 것으로 판단된다.

Keywords

References

  1. Araceli, C. O. 2009. Chemical studies of anthocyanins : A review. Food. Chemistry. 113 : 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
  2. Cha-um, S., H. P. Singh, T. Samphumphuang, and C. Kirdmanee. 2012. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): physiological and morphological changes. AJCS. 6(1) : 176-182.
  3. Cho, J. H., T. R. Kwon, G. G. Min, S. P. Lee, and B. S. Choi. 1995. Effects of planted organ, planting space, and fertilizer level on growth and yield of Chinese yam (Dioscorea opposita Thunb.). Korean J. Crop Sci. 40(1) : 9-15.
  4. Cho, N. K., Y. K. Kang, C. K. Song, Y. C. Jeun, J. S. Oh, Y. I. Cho, and S. J. Park. 2004. Effects of planting density on growth, forage yield and chemical composition of jeju native sorghum. J. Korean Grass Sci. 24(3) : 225-230. https://doi.org/10.5333/KGFS.2004.24.3.225
  5. Jung, K. H., H. J. Koh, J. H. Lee, S. J. Yang, H. P. Moon, and H. C. Choi. 2000. Visual selection of blackish-purple rices in a segregating population. Korea. J. Breed. 32(2) : 127-131.
  6. Kang, S. G., M. S. Hassan, W. G. Sang, M. K. Choi, Y. D. Kim, H. K. Park, A. M. Khalequzzaman, A. Chowdhury, B. K. Kim, and J. H. Lee. 2013. Nitrogen use efficiency of high yielding Japonica rice (Oryza sativa L.) influenced by variable nitrogen applications. Korean J. Crop Sci. 58(3) : 213-219. https://doi.org/10.7740/kjcs.2013.58.3.213
  7. Lee, H. J. 1997. Identification of anthocyanin from pigmented rice seeds. Seoul National University(Master's thesis). 1-74.
  8. Lee, H. L. 2010. Identification and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food Sci. Biotechnol. 19(2) : 391-397. https://doi.org/10.1007/s10068-010-0055-5
  9. Lee, J. S., J. K. Jang, A. Chun, M. G. Choung, H. W. Kim, S. K. Oh, J. H. Lee, M. R. Yoon, D. J. Kim, and Y. C. Song. 2012. Expression of pigments in black rice during kernel development. Korean J. Crop Sci. 57(2) : 127-131. https://doi.org/10.7740/kjcs.2012.57.2.127
  10. Lee, Y. S., J. K. Lee, S. Y. Lee, T. Yun, and S. H. Woo. 2008. Effects of different transplanting dates and agroclimatic zones on quality of brown rice and yield of a pigmented rice variety Josaengheugchal. Korean J. Crop Sci. 53(S) : 9-14.
  11. Fei, H. E., M. U. Lin, G. L. Yan, N. N. Liang, Q. H. Pan, J. Wang, M. J. Reeves, and C. Q. Duan. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. molecules. 15(12) : 9057-9091. https://doi.org/10.3390/molecules15129057
  12. Nagai, I. G., G. Suzushino, and Y. Tsuboki. 1960. Anthoxanthins and anthocyanins in Oryzaceae. Jpn. J. Breed. 10(4) : 47-56.
  13. Osawa, N., N. Ramarathanam, S. Kawakishi, M. Namiki, and T. Tashiro. 1985. Antioxidative defense systems in rice hull against damage caused by oxygen radicals. Agricultural and Biological Chemistry. 49. 3085.
  14. Park, K. Y., Y. K. Kang, S. U. Park, and H. G. Moon. 1989. Effects of planting density and tiller removal on growth and yield of sweeet corn hybrids. Kor. J. Crop Sci. 34(2) : 192-197.
  15. Park, S. Z., H. Y. Kim, S. J. Han, and S. N. Ryu. 2000. Cyanidin-3-glucoside content in F1, F2 and F3 grains of pigmented rice Heugjinjubyeo crosses. Korean J. Breed. 32(3) : 285-290.
  16. Roh, Y. J., D. Y. Chung, J. H. Ryu, J. D. So, and J. W. Cho. 2015. The Effects of Nitrogen rates on The growth and Yield of Waxy Corn after Cultivation Hair Vetch in Agricultural Fields with The Stream. Kor. J. Crop Sci. 60(3) : 333-337. https://doi.org/10.7740/kjcs.2015.60.3.333
  17. Samonte, S. O. PB., L. T. Wilson, J. C. Medley, S. R. M. Pinson, A M. McClung, and J. S. Lales. 2006. Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield-related traits in rice. Agron. J. 98 : 168-176. https://doi.org/10.2134/agronj2005.0180
  18. Sinclair, T. R., and T. Horie. 1989. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Science 29 : 90-98. https://doi.org/10.2135/cropsci1989.0011183X002900010023x
  19. Ryu, S. N., S. Z. Park, and C. T. Ho. 1998. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. Journal of Food and Drug analysis 6(4) : 729-736.
  20. Wang, H., G. Cao, and P. L. Ronald. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45(2) : 304-309. https://doi.org/10.1021/jf960421t
  21. Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute. Los Banos, Philillines. 269.
  22. Kim, H. M., K. Y. Lee, and D. I. Eom. 1983. A study on the effect of $SiO_2$ for each paddy soil types. Korean Society of Soil and Fertilizer : 85-95.
  23. Statistics Korea. 2015. Rice consumption survey.

Cited by

  1. 시비량과 재식밀도 변화에 따른 '눈큰흑찰'의 품질 및 수량변화 vol.62, pp.2, 2017, https://doi.org/10.7740/kjcs.2017.62.2.118
  2. 전북지역 간척지에서 최고품질 벼 품종의 작물학적·이화학적 특성 비교 및 선발 vol.63, pp.3, 2016, https://doi.org/10.7740/kjcs.2018.63.3.196
  3. 흑미 품종의 이앙기와 등숙기 온도 변화에 따른 품질 및 수량 변화 특성 구명 vol.64, pp.2, 2016, https://doi.org/10.7740/kjcs.2019.64.2.063