DOI QR코드

DOI QR Code

Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis

  • Kim, Song-In (Department of Pharmacology, School of Medicine, Kangwon National University) ;
  • Lee, Hee Jae (Department of Pharmacology, School of Medicine, Kangwon National University) ;
  • Kim, Sung-Soo (Department of Pharmacology, School of Medicine, Kangwon National University) ;
  • Kwon, Yong-Soo (School of Pharmacy, Kangwon National University) ;
  • Chun, Wanjoo (Department of Pharmacology, School of Medicine, Kangwon National University)
  • Received : 2016.02.05
  • Accepted : 2016.04.09
  • Published : 2016.07.01

Abstract

Neurofibrillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active $GSK3{\beta}$ ($GSK3{\beta}-S9A$) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin -induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin significantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.

Keywords

References

  1. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913-4917. https://doi.org/10.1073/pnas.83.13.4913
  2. Bre MH, Karsenti E. Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes. Cell Motil Cytoskeleton. 1990;15:88-98. https://doi.org/10.1002/cm.970150205
  3. Shahani N, Brandt R. Functions and malfunctions of the tau proteins. Cell Mol Life Sci. 2002;59:1668-1680. https://doi.org/10.1007/PL00012495
  4. Stoothoff WH, Johnson GV. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta. 2005;1739:280-297. https://doi.org/10.1016/j.bbadis.2004.06.017
  5. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 1989;8:393-399.
  6. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y. Proline-directed and non-prolinedirected phosphorylation of PHF-tau. J Biol Chem. 1995;270:823-829. https://doi.org/10.1074/jbc.270.2.823
  7. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci U S A. 2003;100:10032-10037. https://doi.org/10.1073/pnas.1630428100
  8. Kim SI, Lee WK, Kang SS, Lee SY, Jeong MJ, Lee HJ, Kim SS, Johnson GV, Chun W. Suppression of autophagy and activation of glycogen synthase kinase 3beta facilitate the aggregate formation of tau. Korean J Physiol Pharmacol. 2011;15:107-114. https://doi.org/10.4196/kjpp.2011.15.2.107
  9. LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci. 2002;3:862-872.
  10. Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M. Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat. 2004;28:67-78. https://doi.org/10.1016/j.jchemneu.2003.12.004
  11. Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med . 2009;15:89-100. https://doi.org/10.1016/j.molmed.2009.01.001
  12. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115:2656-2664. https://doi.org/10.1172/JCI26373
  13. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7:1013-1030. https://doi.org/10.1038/nrd2755
  14. Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis. 2009;13:581-590. https://doi.org/10.1016/j.cld.2009.07.004
  15. Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006;13:385-392. https://doi.org/10.1038/sj.cdd.4401778
  16. Ho YS, Yang X, Lau JC, Hung CH, Wuwongse S, Zhang Q, Wang J, Baum L, So KF, Chang RC. Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: implication in Alzheimer's disease pathogenesis. J Alzheimers Dis. 2012;28:839-854. https://doi.org/10.3233/JAD-2011-111037
  17. Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H. Structures, functions and molecular evolution of the penta-EF-hand $Ca^{2+}$-binding proteins. Biochim Biophys Acta. 2002;1600:51-60. https://doi.org/10.1016/S1570-9639(02)00444-2
  18. Colotti G, Poser E, Fiorillo A, Genovese I, Chiarini V, Ilari A. Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. Molecules. 2014;19:13976-13989. https://doi.org/10.3390/molecules190913976
  19. Sohn JH. Identification of novel protein-protein interactions of wild type and caspase-3-truncated tau using yeast two hybrid assay [Thesis]. Kangwon: Kangwon National University; 2012.
  20. Lalioti VS, Ilari A, O'Connell DJ, Poser E, Sandoval IV, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Pololike kinase 1 and is necessary for mitosis. PLoS One. 2014;9:e85438. https://doi.org/10.1371/journal.pone.0085438
  21. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest. 2004;114:121-130. https://doi.org/10.1172/JCI200420640
  22. Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol. 2003;160:53-64. https://doi.org/10.1083/jcb.200210084
  23. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem. 1999;274:22932-22940. https://doi.org/10.1074/jbc.274.33.22932
  24. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 2003;22:5435-5445. https://doi.org/10.1093/emboj/cdg537
  25. Quintanilla RA, Jin YN, Fuenzalida K, Bronfman M, Johnson GV. Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J Biol Chem. 2008;283:25628-25637. https://doi.org/10.1074/jbc.M804291200
  26. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 2006;103:2653-2658. https://doi.org/10.1073/pnas.0511154103
  27. Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986;83:4044-4048. https://doi.org/10.1073/pnas.83.11.4044
  28. Cotman CW, Poon WW, Rissman RA, Blurton-Jones M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol. 2005;64:104-112. https://doi.org/10.1093/jnen/64.2.104
  29. Kang HJ, Yoon WJ, Moon GJ, Kim DY, Sohn S, Kwon HJ, Gwag BJ. Caspase-3-mediated cleavage of PHF-1 tau during apoptosis irrespective of excitotoxicity and oxidative stress: an implication to Alzheimer's disease. Neurobiol Dis. 2005;18:450-458. https://doi.org/10.1016/j.nbd.2004.12.004
  30. Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res. 1999;57:315-323. https://doi.org/10.1002/(SICI)1097-4547(19990801)57:3<315::AID-JNR3>3.0.CO;2-#
  31. Zilkova M, Zilka N, Kovac A, Kovacech B, Skrabana R, Skrabanova M, Novak M. Hyperphosphorylated truncated protein tau induces caspase-3 independent apoptosis-like pathway in the Alzheimer's disease cellular model. J Alzheimers Dis. 2011;23:161-169. https://doi.org/10.3233/JAD-2010-101434
  32. Fasulo L, Ugolini G, Visintin M, Bradbury A, Brancolini C, Verzillo V, Novak M, Cattaneo A. The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J Neurochem. 2000;75:624-633.
  33. Cho JH, Johnson GV. Glycogen synthase kinase 3 beta induces caspase-cleaved tau aggregation in situ. J Biol Chem. 2004;279: 54716-54723. https://doi.org/10.1074/jbc.M403364200
  34. Mella M, Colotti G, Zamparelli C, Verzili D, Ilari A, Chiancone E. Information transfer in the penta-EF-hand protein sorcin does not operate via the canonical structural/functional pairing. A study with site-specific mutants. J Biol Chem. 2003;278:24921-24928. https://doi.org/10.1074/jbc.M213276200
  35. Zamparelli C, Ilari A, Verzili D, Giangiacomo L, Colotti G, Pascarella S, Chiancone E. Structure-function relationships in sorcin, a member of the penta EF-hand family. Interaction of sorcin fragments with the ryanodine receptor and an Escherichia coli model system. Biochemistry. 2000;39:658-666. https://doi.org/10.1021/bi991648v
  36. Zamparelli C, Macquaide N, Colotti G, Verzili D, Seidler T, Smith GL, Chiancone E. Activation of the cardiac $Na^+$-$Ca^{2+}$ exchanger by sorcin via the interaction of the respective $Ca^{2+}$-binding domains. J Mol Cell Cardiol. 2010;49:132-141. https://doi.org/10.1016/j.yjmcc.2010.03.003
  37. Matsumoto T, Hisamatsu Y, Ohkusa T, Inoue N, Sato T, Suzuki S, Ikeda Y, Matsuzaki M. Sorcin interacts with sarcoplasmic reticulum $Ca^{2+}$-ATPase and modulates excitation-contraction coupling in the heart. Basic Res Cardiol. 2005;100:250-262. https://doi.org/10.1007/s00395-005-0518-7
  38. Seidler T, Miller SL, Loughrey CM, Kania A, Burow A, Kettlewell S, Teucher N, Wagner S, Kogler H, Meyers MB, Hasenfuss G, Smith GL. Effects of adenovirus-mediated sorcin overexpression on excitation-contraction coupling in isolated rabbit cardiomyocytes. Circ Res. 2003;93:132-139. https://doi.org/10.1161/01.RES.0000081596.90205.E2
  39. Maddalena F, Laudiero G, Piscazzi A, Secondo A, Scorziello A, Lombardi V, Matassa DS, Fersini A, Neri V, Esposito F, Landriscina M. Sorcin induces a drug-resistant phenotype in human colorectal cancer by modulating $Ca^{2+}$ homeostasis. Cancer Res . 2011;71:7659-7669. https://doi.org/10.1158/0008-5472.CAN-11-2172
  40. Maddalena F, Sisinni L, Lettini G, Condelli V, Matassa DS, Piscazzi A, Amoroso MR, La Torre G, Esposito F, Landriscina M. Resistance to paclitxel in breast carcinoma cells requires a quality control of mitochondrial antiapoptotic proteins by TRAP1. Mol Oncol. 2013; 7:895-906. https://doi.org/10.1016/j.molonc.2013.04.009
  41. Pack-Chung E, Meyers MB, Pettingell WP, Moir RD, Brownawell AM, Cheng I, Tanzi RE, Kim TW. Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor. J Biol Chem. 2000;275: 14440-14445. https://doi.org/10.1074/jbc.M909882199
  42. Woods WS, Boettcher JM, Zhou DH, Kloepper KD, Hartman KL, Ladror DT, Qi Z, Rienstra CM, George JM. Conformation-specific binding of alpha-synuclein to novel protein partners detected by phage display and NMR spectroscopy. J Biol Chem. 2007;282:34555-34567. https://doi.org/10.1074/jbc.M705283200
  43. Tanzi RE, Kovacs DM, Kim TW, Moir RD, Guenette SY, Wasco W. The gene defects responsible for familial Alzheimer's disease. Neurobiol Dis. 1996;3:159-168. https://doi.org/10.1006/nbdi.1996.0016
  44. Yokota O, Terada S, Ishizu H, Ujike H, Ishihara T, Nakashima H, Yasuda M, Kitamura Y, Ueda K, Checler F, Kuroda S. NACP/alphasynuclein, NAC, and beta-amyloid pathology of familial Alzheimer's disease with the E184D presenilin-1 mutation: a clinicopathological study of two autopsy cases. Acta Neuropathol. 2002;104:637-648.
  45. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R. alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem. 1999;274:25481-25489. https://doi.org/10.1074/jbc.274.36.25481

Cited by

  1. Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target vol.12, pp.4, 2016, https://doi.org/10.3390/cancers12040887
  2. Sorcin Activates the Brain PMCA and Blocks the Inhibitory Effects of Molecular Markers of Alzheimer’s Disease on the Pump Activity vol.22, pp.11, 2016, https://doi.org/10.3390/ijms22116055
  3. Soluble resistance-related calcium-binding protein participates in multiple diseases via protein-protein interactions vol.189, pp.None, 2016, https://doi.org/10.1016/j.biochi.2021.06.006