DOI QR코드

DOI QR Code

Identification of Neuroactive Constituents of the Ethyl Acetate Fraction from Cyperi Rhizoma Using Bioactivity-Guided Fractionation

  • Sim, Yeomoon (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Choi, Jin Gyu (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Gu, Pil Sung (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Ryu, Byeol (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Kim, Jeong Hee (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Kang, Insug (Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University) ;
  • Jang, Dae Sik (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Oh, Myung Sook (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2016.04.29
  • Accepted : 2016.06.07
  • Published : 2016.07.01

Abstract

Cyperi Rhizoma (CR), the rhizome of Cyperus rotundus L., exhibits neuroprotective effects in in vitro and in vivo models of neuronal diseases. Nevertheless, no study has aimed at finding the neuroactive constituent(s) of CR. In this study, we identified active compounds in a CR extract (CRE) using bioactivity-guided fractionation. We first compared the anti-oxidative and neuroprotective activities of four fractions and the CRE total extract. Only the ethyl acetate (EA) fraction revealed strong activity, and further isolation from the bioactive EA fraction yielded nine constituents: scirpusin A (1), scirpusin B (2), luteolin (3), 6'-acetyl-3,6-diferuloylsucrose (4), 4',6' diacetyl-3,6-diferuloylsucrose (5), p-coumaric acid (6), ferulic acid (7), pinellic acid (8), and fulgidic acid (9). The activities of constituents 1-9 were assessed in terms of anti-oxidative, neuroprotective, anti-inflammatory, and anti-amyloid-${\beta}$ activities. Constituents 1, 2, and 3 exhibited strong activities; constituents 1 and 2 were characterized for the first time in this study. These results provide evidence for the value of CRE as a source of multi-functional neuroprotectants, and constituents 1 and 2 may represent new candidates for further development in therapeutic use against neurodegenerative diseases.

Keywords

References

  1. Ak, T. and Gulcin, I. (2008) Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  2. Badanai, J., Silva, C., Martins, D., Antunes, D. and Miguel, M. G. (2015) Ability of scavenging free radicals and preventing lipid peroxidation of some phenols and ascorbic acid. J. App. Pharm. Sci. 5, 34-41.
  3. Bastianetto, S., Dumont, Y., Han, Y. and Quirion, R. (2009) Comparative neuroprotective properties of stilbene and catechin analogs: action via a plasma membrane receptor site? CNS Neurosci. Ther. 15, 76-83. https://doi.org/10.1111/j.1755-5949.2008.00074.x
  4. Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  5. Decker, M. (2011) Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem. 18, 1464-1475. https://doi.org/10.2174/092986711795328355
  6. Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N. and Guillemin, G. J. (2012) Neuroprotective effect of natural products against Alzheimer's disease. Neurochem. Res. 37, 1829-1842. https://doi.org/10.1007/s11064-012-0799-9
  7. Ferreres, F., Grosso, C., Gil-Izquierdo, A., Valentao, P. and Andrade, P. B. (2013) Ellagic acid and derivatives from Cochlospermum angolensis Welw. Extracts: HPLC-DAD-ESI/MS(n) profiling, quantification and in vitro anti-depressant, anti-cholinesterase and antioxidative activities. Phytochem. Anal. 24, 534-540. https://doi.org/10.1002/pca.2429
  8. Fujiwara, H., Tabuchi, M., Yamaguchi, T., Iwasaki, K., Furukawa, K., Sekiguchi, K., Ikarashi, Y., Kudo, Y., Higuchi, M., Saido, T. C., Maeda, S., Takashima, A., Hara, M., Yaegashi, N., Kase, Y. and Arai, H. A. (2009) Traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer's amyloid beta proteins in vitro and in vivo. J. Neurochem. 109, 1648-1657. https://doi.org/10.1111/j.1471-4159.2009.06069.x
  9. Gao, Z., Huang, K., Yang, X. and Xu, H. (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta 1472, 643-650. https://doi.org/10.1016/S0304-4165(99)00152-X
  10. Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012a) 6-Shogaol, a ginger product, modulates neuroinflammation:a new approach to neuroprotection. Neuropharmacology 63, 211-223. https://doi.org/10.1016/j.neuropharm.2012.03.016
  11. Ha, S. K., Moon, E., Lee, P., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012b) Acacetin attenuates neuroinflammation via regulation the response to LPS stimuli in vitro and in vivo. Neurochem. Res. 37, 1560-1567. https://doi.org/10.1007/s11064-012-0751-z
  12. Han, X. H., Hong, S. S., Hwang, J. S., Lee, M. K., Hwang, B. Y. and Ro, J. S. (2007) Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res. 30, 13-17. https://doi.org/10.1007/BF02977772
  13. Hong, S. S. and Oh, J. S. (2012) Inhibitors of antigen-induced degranulation of RBL-2H3 cells isolated from wheat bran. J. Korean Soc. Appl. Biol. Chem. 55, 69-74. https://doi.org/10.1007/s13765-012-0012-5
  14. Houghton, P. J. and Howes, M. J. (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer's and Parkinson's disease. Neurosignals 14, 6-22. https://doi.org/10.1159/000085382
  15. Jeon, S. Y., Kwon, S. H., Seong, Y. H., Bae, K., Hur, J. M., Lee, Y. Y., Suh, D. Y. and Song, K. S. (2007) Beta-secretase (BACE1)-inhibiting stilbenoids from Smilax Rhizoma. Phytomedicine 14, 403-408. https://doi.org/10.1016/j.phymed.2006.09.003
  16. Jin, C. Y., Lee, J. D., Park, C., Choi, Y. H. and Kim, G. Y. (2007) Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol. Sin. 28, 1645-1651. https://doi.org/10.1111/j.1745-7254.2007.00651.x
  17. Jung, S. H., Kim, S. J., Jun, B. G., Lee, K. T., Hong, S. P., Oh, M. S., Jang, D. S. and Choi, J. H. (2013) ${\alpha}$-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of $NF{\kappa}B$ signalling in RAW 264.7 cells. J. Ethnopharmacol. 147, 208-214. https://doi.org/10.1016/j.jep.2013.02.034
  18. Kilani, S., Sghanier, M. B., Limen, I., Bouhlel, I., Boubaker, J., Bhouri, W., Skandrani, I., Neffatti, A., Ammar, R. B., Dijoux-Franca, M. G., Ghedira, K. and Chekir-Ghedira, L. (2008) In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus. Bioresour. Technol. 99, 9004-9008. https://doi.org/10.1016/j.biortech.2008.04.066
  19. Kim, H. G. and Oh, M. S. (2012) Herbal medicines for the prevention and treatment of Alzheimer's disease. Curr. Pharm. Des. 18, 57-75. https://doi.org/10.2174/138161212798919002
  20. Kim, H. G., Hong, J., Huh, Y., Park, C., Hwang, D. S., Choi, J. H. and Oh, M. S. (2013) Cyperi Rhizoma inhibits the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced reduction in nigrostriatal dopaminergenic neurons in estrogen-deprived mice. J. Ethnopharmacol. 148, 322-328. https://doi.org/10.1016/j.jep.2013.04.038
  21. Kim, T. H. and Park, J. Y. (1997) Effect of cyperi rhizoma on CCl4 induced hepatotoxicity and lipid peroxidation. Kor. J. Pharmacogn. 28, 185-191.
  22. Kobayashi, K., Ishihara, T., Khono, E., Miyase, T. and Yoshizaki, F. (2006) Constituents of stem bark of Callistemon rigidus showing inhibitory effects on mouse alpha-amylase activity. Biol. Pharm. Bull. 29, 1275-1277. https://doi.org/10.1248/bpb.29.1275
  23. Kong, Q., Ren, X., Jiang, L., Pan, Y. and Sun, C. (2010) Scirpusin A, a hydroxystilbene dimer from Xinjiang wine grape, acts as an effective singlet oxygen quencher and DNA damage protector. J. Sci. Food. Agric. 90, 823-828.
  24. Kurashina, Y., Miura, A., Enomoto, M. and Kuwahara, S. (2011) Stereoselective synthesis of malyngic acid and fulgidic acid. Tetrahedron 67, 1649-1653. https://doi.org/10.1016/j.tet.2011.01.005
  25. Lam, S. H., Chen, J. M., Kang, C. J., Chen, C. H. and Lee, S. S. (2008) Alpha-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry 69, 1173-1178. https://doi.org/10.1016/j.phytochem.2007.12.004
  26. Lee, C. H., Hwang, D. S., Kim, H. G., Oh, H., Park, H., Cho, J. H., Lee, J. M., Jang, J. B., Lee, K. S. and Oh, M. S. (2010) Protective effect of Cyperi rhizoma against 6-hydroxydopamine-induced neuronal damage. J. Med. Food 13, 564-571. https://doi.org/10.1089/jmf.2009.1252
  27. Liu, B. and Hong, J. S. (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7. https://doi.org/10.1124/jpet.102.035048
  28. Mandel, S. A., Amit, T., Weinreb, O., Reznichenko, L. and Youdim, M. B. (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci. Ther. 14, 352-365. https://doi.org/10.1111/j.1755-5949.2008.00060.x
  29. Maruki-Uchida, H., Kurita, I., Sugiyama, K., Sai, M., Maeda, K. and Ito, T. (2013) The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biol. Pharm. Bull. 36, 845-849. https://doi.org/10.1248/bpb.b12-00708
  30. Miyase, T. and Ueno, A. (1993) Sucrose derivatives from the roots of Polygala tenuifolia. Shoyakugaku Zasshi 47, 267-278.
  31. Nakano, K., Murakami, K., Takaishi, Y. and Tomimatsu, T. (1986) Feruloyl sucrose derivatives from Heloniopsis orientalis. Chem. Pharm. Bull. 34, 5005-5010.
  32. Natarajan, K. S., Narasimhan, M., Shanmugasundaran, K. R. and Shanmugasundaram, E. R. B. (2006) Antioxidant activity of a saltspice-herbal mixture against free radical induction. J. Ethnopharmacol. 105, 76-83. https://doi.org/10.1016/j.jep.2005.09.043
  33. Patil, S. P., Jain, P. D., Sancheti, J. S., Ghumatkar, P. J., Tambe, R. and Sathaye, S. (2014) Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 86, 192-202. https://doi.org/10.1016/j.neuropharm.2014.07.012
  34. Richard, T., Pawlus, A. D., Iglesias, M. L., Pedrot, E., Waffo-Teguo, P., Merillon, J. M. and Monti, J. P. (2011) Neuroprotective properties of resveratrol and derivatives. Ann. N. Y. Acad. Sci. 1215, 103-108. https://doi.org/10.1111/j.1749-6632.2010.05865.x
  35. Riviere, C., Papastamoulis, Y., Fortin, P. Y., Delchier, N., Andriamanarivo, S., Waffo-Teguo, P., Kapche, G. D., Amira-Guebalia, H., Delaunay, J. C., Merillon, J. M., Richard, T. and Monti, J. P. (2010) New stilbene dimers against amyloid fibril formation. Bioorg. Med. Chem. Lett. 20, 3441-3443. https://doi.org/10.1016/j.bmcl.2009.09.074
  36. Roginsky, V. and Lissi E. A. (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 92, 235-254. https://doi.org/10.1016/j.foodchem.2004.08.004
  37. Sano, S., Sugiyama, K., Ito, T., Katano, Y. and Ishihata, A. (2011) Identification of the strong vasorelaxing substance scirpusin B, a dimer of piceatannol, from passion fruit (Passiflora edulis) seeds. J. Agric. Food Chem. 59, 6209-6213. https://doi.org/10.1021/jf104959t
  38. Schober, A. (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res. 318, 215-224. https://doi.org/10.1007/s00441-004-0938-y
  39. Sharvit, A., Segal, M., Kehat, O., Stork, O. and Richter-Levin, G. (2015) Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone. Stress 18, 319-327. https://doi.org/10.3109/10253890.2015.1023789
  40. Swislocka, R., Kowczyk-Sadowy, M., Kalinowska, M. and Lewandowski, W. (2012) Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates. Spectroscopy 27, 35-48. https://doi.org/10.1155/2012/546146
  41. Tran, H. H., Nguyen, M. C., Le, H. T., Nguyen, T. L., Pham, T. B., Chau, V. M., Nguyen, H. N. and Nguyen, T. D. (2014) Inhibitors of ${\alpha}$-glucosidase and ${\alpha}$-amylase from Cyperus rotundus. Pharm. Biol. 52, 74-77. https://doi.org/10.3109/13880209.2013.814692
  42. Vassar, P. S. and Culling, C. F. (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch. Pathol. 68, 487-498.
  43. Von Gadow, A., Joubert, E. and Hansmann C. F. (1997) Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), ${\alpha}$-tocopherol, BHT, and BHA. J. Agric. Food Chem. 45, 632-638. https://doi.org/10.1021/jf960281n
  44. Wyss-Coray, T. and Mucke, L. (2002) Inflammation in neurodegenerative disease--a double-edged sword. Neuron 35, 419-432. https://doi.org/10.1016/S0896-6273(02)00794-8
  45. Xu, Y., Zhang, C., Wang, R., Govindarajan, S. S., Barish, P. A., Vernon, M. M., Fu, C., Acharya, A. P., Chen, L., Boykin, E., Yu, J., Pan, J., O'Donnell, J. M. and Ogle, W. O. (2011) Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway. Neuroscience 182, 71-81. https://doi.org/10.1016/j.neuroscience.2011.02.042
  46. Yang, H., Dong, Y., Du, H., Shi, H., Peng, Y. and Li, X. (2011) Antioxidant compounds from propolis collected in Anhui, China. Molecules 16, 3444-3455. https://doi.org/10.3390/molecules16043444
  47. Yoo, D. Y., Choi, J. H., Kim, W., Nam, S. M., Jung, H. Y., Kim, J. H., Won, M. H., Yoon, Y. S. and Hwang, I. K. (2013) Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model. Neurol. Res. 35, 813-820. https://doi.org/10.1179/1743132813Y.0000000217
  48. Yoshioka, T., Inokuchi, T., Fujioka, S. and Kimura, Y. Z. (2004) Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z. Naturforsch., C, J. Biosci. 59, 509-514.
  49. Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X. and Lu, D. (2014) Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-${\kappa}B$, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Exp. Ther. Med. 7, 1065-1070. https://doi.org/10.3892/etm.2014.1564

Cited by

  1. UHPLC-QTOF-MS/MS metabolites profiling and antioxidant/antidiabetic attributes of Cuscuta reflexa grown on Casearia tomentosa: exploring phytochemicals role via molecular docking vol.23, pp.1, 2016, https://doi.org/10.1080/10942912.2020.1764578