References
- M. Acikgoz, A review on 2-normed structures, Int. J. Math. Anal. 1 (2007), no. 4, 187-191.
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
- C. Alsina, On the stability of a functional equation arising in probabilistic normed spaces, General Inequal., Oberwolfach 5, 263-271 (1986). Birkhuser, Basel (1987).
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- M. Arunkumar, M. J. Rassias, and Y. Zhang, Ulam-Hyers stability of a 2-variable AC-mixed type functional equation: direct and fixed point methods, J. Mod. Math. Front. 1 (2012), no. 3, 10-26.
- M. Arunkumar and S. Karthikeyan, Solution and Intuitionistic Fuzzy stability of n-dimensional quadratic functional equation: Direct and Fixed Point Methods, Int. J. Adv. Math. Sci. 2 (2014), no. 1, 21-33.
- M. Arunkumar and T. Namachivayam, Stability of a n-dimensional additive functional equation in random normed space, Int. J. Math. Anal. 4 (2012), no. 2, 179-186.
- J. Baker, A general functional equation and its stability, Proc. Amer. Math. Soc. 133 (2005), no. 6, 1657-1664. https://doi.org/10.1090/S0002-9939-05-07841-X
- J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc. 112 (1991), 729-732. https://doi.org/10.1090/S0002-9939-1991-1052568-7
- A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016), 2309-2317. https://doi.org/10.3233/IFS-152001
- A. Bodaghi, Stability of a mixed type additive and quartic functional equation, Filomat. 28 (2014), no. 8, 1629-1640. https://doi.org/10.2298/FIL1408629B
- A. Bodaghi, Stability of a quartic functional equation, The Scientific World Journal. 2014, Art. ID 752146, 9 pages, doi:10.1155/2014/752146.
- A. Bodaghi, I. A. Alias, and M. Eshaghi Gordji, On the stability of quadratic double centralizers and quadratic multipliers: A fixed point approach, J. Inequal. Appl. 2012, Article ID 957541, 9 pages.
- A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Ulam stability of a quartic functional equation, Abs. Appl. Anal. 2012, Art. ID 232630 (2012).
- A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequal. Appl. 2011 (2011): 53. https://doi.org/10.1186/1029-242X-2011-53
- A. Bodaghi, S. M. Moosavi, and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara. 59 (2013), 235-250. https://doi.org/10.1007/s11565-013-0185-9
- A. Bodaghi, C. Park, and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc. To appear.
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
- L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations,An. Univ. Timisoara, Ser. Mat. Inform. 41 (2003), 25-48.
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
- Y. J. Cho, M. E. Gordji, and S. Zolfaghari, Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces, J. Ineq. Appl. doi:10.1155/2010/403101
- P. W. Cholewa, Remarks on the stability of functional equations, Aequ. Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ Hamburg. 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- G. L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295 (2004), 127-133. https://doi.org/10.1016/j.jmaa.2004.03.011
- Z. Gajda, On the stability of additive mappings, Inter. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. G.avruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- M. E. Gordji, A. Bodaghi, and C. Park, A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras, U.P.B. Sci. Bull., Series A. 73, Iss. 2 (2011), 65-73.
- M. E. Gordji and M. B. Savadkouhi, Stability of Mixed Type Cubic and Quartic Functional Equations in Random Normed Spaces, J. Ineq. Appl. doi:10.1155/2009/527462.
- O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, vol. 536 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 2001.
- O. Hadzic, E. Pap, and M. Budincevic, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika. 38 (2002), no. 3, 363-382.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998.
- P. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368-372. https://doi.org/10.1007/BF03322841
- O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets. Sys. 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
- L. Maligranda, A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions-a question of priority, Aequ. Math. 75 (2008), 289-296. https://doi.org/10.1007/s00010-007-2892-8
- B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
- D. Mihet and V. Radu, On the stability of the additive Cauchy functional equa- tion in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572 . https://doi.org/10.1016/j.jmaa.2008.01.100
- D. Mihet, The probabilistic stability for a functional equation in a single variable, Acta Math. Hungar. 123, 249256 (2009), doi:10.1007/s10474-008-8101-y.
- D. Mihet, R. Saadati, and S. M. Vaezpour, The stability of the quartic functional equation in random normed spaces, Acta Appl. Math. 110 (2010), 797-803. https://doi.org/10.1007/s10440-009-9476-7
- D. Mihet, R. Saadati, and S. M. Vaezpour, The stability of an additive functional equation in Menger probabilistic normed spaces Math. Slovaca. 61 (2011), 817-826.
- J. H. Park, Intuitionistic fuzzy metric spaces, Chaos. Sol. Frac. 22 (2004), 10391046. https://doi.org/10.1016/j.chaos.2004.02.051
-
J. Matina, Rassias, M. Arunkumar, and S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in quasi-
$\beta$ normed spaces: direct and fixed point methods, J. Con. Appl. Math. 14 (2014), 22-46. - J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- J. M. Rassias, Solution of the Ulam problem for cubic mappings, An. Univ. Timisoara Ser. Mat. Inform. 38 (2000), 121-132.
- J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Math. 34(54) (1999), no. 2, 243-252.
-
J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi-
$\beta$ -normed spaces, Cont. Anal. Appl. Math. 3 (2015), no. 2, 293-309. -
J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-
$\beta$ -normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. https://doi.org/10.1016/j.jmaa.2009.03.005 - J. M. Rassias, E. Son, and H. M. Kim, On the Hyers-Ulam stability of 3D and 4D mixed type mappings, Far East J. Math. Sci. 48 (2011), no. 1, 83-102.
- J. M. Rassias, M. Arunkumar, E. Sathya, and N. M. Kumar, Solution And Stability Of A ACQ Functional Equation In Generalized 2-Normed Spaces, Intern. J. Fuzzy Math. Arch. 7 (2015), no. 2, 213-224.
- J. M. Rassias, M. Arunkumar, and T. Namachivayam, Stability Of The Leibniz Additive-Quadratic Functional Equation In Felbin's And Random Normed Spaces: A Direct Method, J. Acad. Res. J. Inter. (2015), 102-110.
- J. M. Rassias, M. Arunkumar, E. Sathya, and T. Namachivayam, Various Generalized Ulam-Hyers Stabilities of a Nonic Functional Equation, Tbilisi Math. J. (Submitted).
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106-113. https://doi.org/10.1016/0022-247X(91)90270-A
- T. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
- Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
- K. Ravi, M. Arunkumar, and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Sci. 3 (2008), no. 8, 36-47.
- K. Ravi, J. M. Rassias, M. Arunkumar, and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Art. 114, 29 pages.
- R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos. Sol. Frac. 27 (2006), 3313-3344.
- R. Saadati, S. M. Vaezpour, and Y. Cho, A note on the "On the stability of cubic mappings and quadratic mappings in random normed spaces J. Inequal. Appl. 2009, Art. ID 214530 (2009).
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing, New York, NY, USA, 1983.
- A. N. Sherstnev, On the notion of a random normed space, Doklady Akademii Nauk SSSR. 149 (1963), 280-283 (Russian).
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano. 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
- T. Z. Xu, J. M. Rassias, and W. X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), 1032-1047.
-
T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-
$\beta$ -normed spaces, J. Inequal. Appl. 2010, Art. ID 423231, 23 page. - T. Z. Xu, J. M. Rassias, and W. X. Xu, A fixed point approach to the stability of a general mixed AQCQ-functional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010, Art. ID 812545, 24 pages.
-
T. Z. Xu and J. M. Rassias, Approximate Septic and Octic mappings in quasi-
$\beta$ -normed spaces, J. Comput. Anal. Appl. 15 (2013), no. 6, 1110-1119. - S. Y. Yang, A. Bodaghi, and K. A. M. Atan, Approximate cubic *-derivations on Banach *-algebras, Abst. Appl. Anal. 2012, Article ID 684179, 12 pages, doi:10.1155/2012/684179.
Cited by
- GENERAL SOLUTION AND ULAM-HYERS STABILITY OF VIGINTI FUNCTIONAL EQUATIONS IN MULTI-BANACH SPACES vol.31, pp.2, 2018, https://doi.org/10.14403/jcms.2018.31.1.199
- DUOTRIGINTIC FUNCTIONAL EQUATION AND ITS STABILITY IN BANACH SPACES vol.28, pp.3, 2016, https://doi.org/10.11568/kjm.2020.28.3.525
- Hyers-Ulam stability quintic functional equation in F-spaces: direct method vol.13, pp.4, 2016, https://doi.org/10.32513/tbilisi/1608606046
- On Ulam Stability of Functional Equations in 2-Normed Spaces-A Survey vol.13, pp.11, 2016, https://doi.org/10.3390/sym13112200