DOI QR코드

DOI QR Code

A Method for Assigning Clients to Servers for the Minimization of Client-Server Distance Deviation

클라이언트-서버간 거리 편차의 최소화를 위한 클라이언트의 서버 배정 방법

  • Lee, Sunghae (Computer Science and Engineering Major, Graduate School, Hankuk University of Foreign Studies) ;
  • Kim, Sangchul (Computer Science and Engineering Major, Graduate School, Hankuk University of Foreign Studies)
  • 이성해 (한국외국어대학교 컴퓨터 및 전자시스템 공학부) ;
  • 김상철 (한국외국어대학교 컴퓨터 및 전자시스템 공학부)
  • Received : 2016.05.13
  • Accepted : 2016.06.20
  • Published : 2016.06.20

Abstract

Multi-client online games usually employ multi-serve architectures. For group play, if the user response time deviation between the clients in a group is large, the fairness and attractions of the game will be degraded. In this paper, given new clients, we propose a method for assigning the clients to servers to minimize the deviation of client-server distance which plays a major role in the user response time. This method also supports client matching for group play and server load balancing. We formulate the client-server assignment problem as an IP one, and present a GA(Genetic Algorithm)-based algorithm to solve it. We experimented our method under various settings and analyzed its features. To our survey, little research has been previously performed on client-server assignment under consideration of client matching, distance deviation minimization and server load balancing.

다수 클라이언트(사용자)들이 동시에 진행하는 온라인 게임은 대부분 다중 서버 구조를 채택하고 있다. 그룹 플레이의 경우, 같은 그룹내 클라이언트들 사이에 사용자 반응시간에 큰 차이가 나면 게임의 공정성과 흥미를 떨어뜨리게 된다. 본 논문에서는 신규 클라이언트들을 대상으로, 이런 시간의 중요한 요소인 클라이언트-서버간 거리의 편차를 최소하도록 클라이언트를 서버에 배정하는 방법을 제안한다. 본 방법은 그룹 플레이를 위한 클라이언트 매칭과 서버 부하 균등도 함께 지원하고 있다. 우리는 클라이언트-서버 배정 문제를 IP(Integer Programming)으로 모델링라고 그 해를 구하는 GA(Genetic Algorithm) 기반의 알고리즘을 제안한다. 우리는 본 논문에서 재안한 방법을 다양한 조건하애서 실험했고 그 특성을 분석한다. 우리가 조사해 본바, 클라이언트 매칭과 서버 부하를 고려하면서, 클라이언트-서버 거리 편차를 최소화하는 클라이언트-서버 배정에 관한 기존 연구는 많지 않았다.

Keywords

References

  1. S. Farlow, J. L. Trahan, "Client-Server Assignment in Massively Multiplayer Online Games", Proc. of CGAMES, 2014, pp.1-8.
  2. C. Eduardo B. Bezerra, et. al, "Adaptive Load-balancing for MMOG Servers Using KD-trees", ACM Computers in Entertainment, Vol. 10, No. 3, Article 5, 2012, pp. 1-16.
  3. R. W.H. Lau, "Hybrid Load Balancing for Online Games", Proc. of ACM International Conference on Multimedia, 2010, pp.1231-1234.
  4. Genetic Algorithm, https://en.wikipedia.org/wiki/Genetic_algorithm.
  5. G. Armitage. "Optimising Online FPS Game Server Discovery through Clustering Servers by Origin Autonomous System." Proceedings of the International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), 2008, pp. 3-8.
  6. S. Gargolinski, C. St. Pierre, M. Claypool. "Game Server Selection for Multiple Players." Proc. of 4th ACM SIGCOMM Workshop on Network and System Support for Games, 2005, pp. 1-6.
  7. Y. Chen, S. Radhakrishnan, S. Dhall, S. Karabuk. "Server Selection with Delay Constraints for Online Games." Proceedings of GLOBECOM Workshops, 2010, pp. 882-887.
  8. M. Kohana, et. al, "Dynamic ReAssignment Rules on Multi-Server Web-based MORPG System", International Journal of Grid and Utility Computing, vol. 3, no. 2/3, pp. 136-144, 2012 https://doi.org/10.1504/IJGUC.2012.047764
  9. L. Zhang, X. Tang, "The Client Assignment Problem for Continuous Distributed Interactive Applications: Analysis, Algorithms, and Evaluation," IEEE Trans. Par. Distrib. Sys., vol. 25, no. 3, 2014, pp.785-795. https://doi.org/10.1109/TPDS.2013.47
  10. K. Lee, B. Ko, S. Calo. "Adaptive Server Selection for Large Scale Interactive Online Games." Computer Networks, Vol. 49, Issue 1, 2005, pp.84-102. https://doi.org/10.1016/j.comnet.2005.04.006
  11. D. T. Ahmed "A microcell oriented load balancing model for collaborative virtual environments", Proc. of VECIMS. 208, pp.86-91.
  12. B. De Vleeschauwer, et. al, "Dynamic Microcell Assignment for Massively Multiplayer Online Gaming", Proc. of NetGames, 2005, pp. 1-7.
  13. B. Ng, A. Si, R. Lau, F. Li, "A Multi-Server Architecture for Distributed Virtual Walkthrough", Proc. of the ACM Symposium on Virtual Reality Software and Technology, 2002, pp.11-13
  14. D. Lee, M. Lim, S. Han, K. Lee, "ATLAS: A Scalable Network Framework for Distributed Virtual Environments", Presence: 16(2), 2007, pp.125-156 https://doi.org/10.1162/pres.16.2.125
  15. S.-Y. Yun, A Proutiere, "Distributed Proportional Fair Load Balancing in Heterogenous Systems", Proc. of SIGMETRICS, 2015, pp.17-30.
  16. Y Francillette, "A Players Clustering Method to Enhance the Players' Experience in Multi-player Games", Proc. of CGAMES, 2013, pp.229-234.
  17. C. Schlup. "Automatic Game Matching", http://dcg.ethz.ch/theses/ws0203/OnlineMatching_abstract.pdf.
  18. R. S. Anders Drachen, "Guns, Swords and Data: Clustering of Player Behavior in Computer Games in the Wild," Proc. of IEEE Conference on Computational Intelligence and Games (CIG), 2012, pp. 163-170.