과제정보
연구 과제 주관 기관 : Natural Science Foundation of China
참고문헌
- Addenbrooke, T.I. and Potts, D.M. (2001), "Twin tunnel interaction: surface and subsurface effects", Int. J. Geomech., 1(2), 249-271. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:2(249)
- Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258)
- Bobet, A. (2010), "Drained and undrained response of deep tunnels subjected to far-field shear loading", Tunn. Undergr. Space Technol., 25(1), 21-31. https://doi.org/10.1016/j.tust.2009.08.001
- Byun, G.W., Kim, D.G. and Lee, S.D. (2006), "Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel", Tunn. Undergr. Space Technol., 21(3-4), 361-367. https://doi.org/10.1016/j.tust.2005.12.178
- Chehade, F.H. and Shahrour, I. (2008), "Numerical analysis of the interaction between twin-tunnels: influence of the relative position and construction procedure", Tunn. Undergr. Space Technol., 23(2), 210-214. https://doi.org/10.1016/j.tust.2007.03.004
- Chou, W.I. and Bobet, A. (2002), "Prediction of ground deformations in shallow tunnels in clay", Tunn. Undergr. Space Technol., 17(l), 3-19. https://doi.org/10.1016/S0886-7798(01)00068-2
- Dang, H.K. and Meguid, M.A. (2008), "Application of a multilaminate model to simulate the undrained response of structured clay to shield tunneling", Can. Geotech. J., 45(1), 14-28. https://doi.org/10.1139/T07-066
- Do, N., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern", Acta Geotech., 9(4), 673-694. https://doi.org/10.1007/s11440-013-0279-7
- Gui, M.W. and Chen, S.L. (2013), "Estimation of transverse ground surface settlement induced by DOT shield tunneling", Tunn. Undergr. Space Technol., 33(1), 119-130. https://doi.org/10.1016/j.tust.2012.08.003
- Kim, S.H., Burd, H.J. and Milligan, G.W.E. (1998), "Model testing of closely spaced tunnels in clay", Geotechnique, 48(3), 375-388. https://doi.org/10.1680/geot.1998.48.3.375
- Klar, A., Vorster, T.E.B., Soga, K. and Mair, R.J. (2005), "Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions", Geotechnique, 55(6), 461-466. https://doi.org/10.1680/geot.2005.55.6.461
- Klar, A., Vorster, T.E.B., Soga, K. and Mair, R.J. (2007), "Elastoplastic solution for soil-pipe-tunnel interaction", J. Geotech. Geoenviron. Eng., 133(7), 782-792. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(782)
- Klar, A., Marshall, A.M., Soga, K. and Mair, R.J. (2008), "Tunneling effects on jointed pipelines", Can. Geotech. J., 45(1), 131-139. https://doi.org/10.1139/T07-068
- Lee, K.M., Rowe, R.K. and Lo, K.Y. (1992), "Subsidence owing to tunneling I: Estimating the gap parameter", Can. Geotech. J., 29(6), 929-940. https://doi.org/10.1139/t92-104
- Lee, C.J., Wu, B.R., Chen, H.T. and Chiang, K.K. (2006), "Tunnel stability and arching effects during tunneling in soft clayey soil", Tunn. Undergr. Space Technol., 21(2), 119-132. https://doi.org/10.1016/j.tust.2005.06.003
- Li, P., Du, S.J., Ma, X.F., Yin, Z.Y. and Shen, S.L. (2014), "Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel", Tunn. Undergr. Space Technol., 42(5), 59-66. https://doi.org/10.1016/j.tust.2014.02.004
- Liu, B.C. (1993), Ground Surface Movements Due to Underground Excavation in the PR China, Pergamon Press, Oxford, UK.
- Liu, H.Y., Small, J.C., Carter, J.P. and Williams, D.J. (2009), "Effects of tunnelling on existing support systems of perpendicularly crossing tunnels", Comput. Geotech., 36(5), 880-894. https://doi.org/10.1016/j.compgeo.2009.01.013
- Loganathan, N. and Poulos, H.G. (1998), "Analytical prediction for tunneling-induced ground movements in clays", J. Geotech. Geoenviron. Eng., 124(9), 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
- Marshall, A.M., Klar, A. and Mair, R.J. (2010), "Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior", J. Geotech. Geoenviron. Eng., 136(12), 1664-1672. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000390
-
Masin, D. (2009), "3D modeling of an NATM tunnel in high
$K_0$ clay using two different constitutive models", J. Geotech. Geoenviron. Eng., 135(9), 1326-1335. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000017 - Ng, C.W.W., Lee, K.M. and Tang, D.K.W. (2004), "Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions", Can. Geotech. J., 41(3), 523-539. https://doi.org/10.1139/t04-008
- Ng, C.W.W., Boonyarak, T. and Masin, D. (2013), "Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels", Can. Geotech. J., 50(9), 935-946. https://doi.org/10.1139/cgj-2012-0445
- Park, K.H. (2004), "Elastic solution for tunneling-induced ground movements in clays", Int. J. Geomech., 4(4), 310-318. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310)
- Park, K.H. (2005), "Analytical solution for tunneling-induced ground movement in clays", Tunn. Undergr. Space Technol., 20(3), 249-261. https://doi.org/10.1016/j.tust.2004.08.009
- Peck, R.B. (1969), "Deep excavation and tunneling in soft ground", Proceedings of 7th International Symposium on Soil Mechanics Foundation Engineering, Mexico City, Mexico, June.
- Thomas, K. and Gunther, M. (2006), "A numerical study of the effect of soil and grout material properties and cover depth in shield tunneling", Comput. Geotech., 33(4-5), 234-247. https://doi.org/10.1016/j.compgeo.2006.04.004
- Verruijt, A. and Booker, J.R. (1996), "Surface settlements due to deformation of a tunnel in an elastic half plane", Geotechnique, 46(4), 753-756. https://doi.org/10.1680/geot.1996.46.4.753
- Vesic, A.B. (1961), "Bending of beams resting on isotropic elastic solids", J. Eng. Mech., 87(2), 35-53.
- Vorster, T.E.B., Mair, R.J., Soga, K. and Klar, A. (2005a), "Centrifuge modelling of the effects of tunnelling on buried pipelines: mechanisms observed", Proceedings of the 5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, The Netherlands, June.
- Vorster, T.E.B., Klar, A., Soga, K. and Mair, R.J. (2005b), "Estimating the effects of tunneling on existing pipelines", J. Geotech. Geoenviron. Eng., 131(11), 1399-1410. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1399)
- Wang, Y., Shi, J.W. and Ng, C.W.W. (2011), "Numerical modeling of tunneling effect on buried pipelines", Can. Geotech. J., 48(7), 1125-1137. https://doi.org/10.1139/t11-024
- Yang, X.L. and Wang, J.M. (2011), "Ground movement prediction for tunnels using simplified procedure", Tunn. Undergr. Space Technol., 26(3), 462-471. https://doi.org/10.1016/j.tust.2011.01.002
- Yang, J.S., Liu, B.C. and Wang, M.C. (2004), "Modeling of tunneling-induced ground surface movements using stochastic medium theory", Tunn. Undergr. Space Technol., 19(2), 113-123. https://doi.org/10.1016/j.tust.2003.07.002
- Zhang, Z.G., Huang, M.S. and Zhang, M.X. (2011), "Theoretical prediction of ground movements induced by tunnelling in multi-layered soils", Tunn. Undergr. Space Technol., 26(2), 345-355. https://doi.org/10.1016/j.tust.2010.11.005
- Zhang, Z.G., Zhang, M.X., Wang, W.D. and Xi, X.G. (2014), "Tunneling-induced ground movements in clays considering oval-shaped convergence deformation pattern", Proceedings of Geo-Shanghai 2014-Tunneling and Underground Construction, Shanghai, China, May.
피인용 문헌
- Complex Variable Solutions for Soil and Liner Deformation due to Tunneling in Clays vol.18, pp.7, 2018, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001197
- Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D vol.20, pp.4, 2016, https://doi.org/10.12989/cac.2017.20.4.429
- Field test and research on shield cutting pile penetrating cement soil single pile composite foundation vol.23, pp.6, 2016, https://doi.org/10.12989/gae.2020.23.6.513