References
- Bombolakis, E.G. (1968), "Photoelastic study of initial stages of brittle fracture in compression", Tectonophysics, 6(6), 461-473. https://doi.org/10.1016/0040-1951(68)90072-3
- Cai, M. and Kaiser, P.K. (2005), "Assessment of excavation damaged zone using a micromechanics model", Tunn. Undergr. Sp. Tech., 20(4), 301-310. https://doi.org/10.1016/j.tust.2004.12.002
- Chen, W.Z., Zhu, W.S. and Shao, J.F. (2004), "Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation", Int. J. Rock Mech. Min., 41(4), 669-677. https://doi.org/10.1016/j.ijrmms.2003.01.003
- Drucker, D.C. and Prager, W. (1953), "Soil mechanics and plasticity analysis or limit design", Q Appl. Math., 10(2), 157-165.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min., 67, 20-28.
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J. Fract., 1(3), 137-155.
- Hong, K.R. (2015), "State-of-art and prospect of tunnels and underground works in China", Tunnel Constr., 35(2), 95-107.
- Kachanov, L.M. (1958), "On the creep fracture time", Izv. Akad. Nauk. USSR Otd. Tekh., 8, 26-31.
- Keats, J.B. and Lawrence, F.P. (1997), "Weibull maximum likelihood parameter estimates with censored data", J. Qual. Technol., 29, 105-110. https://doi.org/10.1080/00224065.1997.11979730
- Krajcinovic, D. (1985), "Continuous damage mechanics revisited: Basic concepts and definitions", J. Appl. Mech., 52(4), 829-834. https://doi.org/10.1115/1.3169154
- Kruschwitz, S. and Yaramanci, U. (2004), "Detection and characterization of the disturbed rock zone in claystone with the complex resistivity method", J. Appl. Geophys., 57(1), 63-79. https://doi.org/10.1016/j.jappgeo.2004.09.003
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001
- Leu, S.Y. (2005), "Convergence analysis and validation of sequential limit analysis of plane-strain problems of the von Mises model with non‐linear isotropic hardening", Int. J. Numer. Meth. Eng., 64(3), 322-334. https://doi.org/10.1002/nme.1367
- Li, B., Jiang, Y.J., Mizokami, T., Ikusada, K. and Mitani, Y. (2014), "Anisotropic shear behavior of closely jointed rock masses", Int. J. Rock Mech. Min., 71, 258-271.
- Li, Y., Zhou, H., Zhu, W.S., Li, S.C. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
- Lin, P., Zhou, Y., Liu, H. and Wang, C. (2013), "Reinforcement design and stability analysis for large-span tailrace bifurcated tunnels with irregular geometry", Tunn. Undergr. Sp. Tech., 38(9), 189-204. https://doi.org/10.1016/j.tust.2013.07.011
- Lin, P., Liu, H.Y. and Zhou, W.Y. (2015), "Experimental study on failure behaviour of deep tunnels under high in-situ stresses", Tunn. Undergr. Sp. Tech., 46, 28-45. https://doi.org/10.1016/j.tust.2014.10.009
- Liu, W.D. (2015), "Scientific understanding of the belt and road initiative of China and related research themes", Prog. Geogr., 34(5), 538-544.
- Liu, H.Y. and Yuan, X.P. (2014), "A damage constitutive model for rock mass with persistent joints considering joint shear strength", Can. Geotech. J., 52(8), 1136-1143. https://doi.org/10.1139/cgj-2014-0252
- Liu, H.Y., Small, J.C., Carter, J.P. and Williams, D.J. (2009), "Effects of tunnelling on existing support systems of perpendicularly crossing tunnels", Comput. Geotech., 36(5), 880-894. https://doi.org/10.1016/j.compgeo.2009.01.013
- Ma, J., Sun, S.Z., Zhao, W.Y., Wang, L., Ma, Y., Liu, H., Zhang, W.W., Chen, H.Y., Chen, L., Wei, Y.W. and Ye, F. (2015), "Review on China's tunnel engineering research: 2015", China J. Highway Transport, 28(5), 1-65.
- Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech.-ASCE, 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Ng, C.W.W., Boonyarak, T. and Masin, D. (2013), "Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels", Can. Geotech. J., 50(9), 935-946. https://doi.org/10.1139/cgj-2012-0445
- Qin, Y.P. (2001), "Discussion on damage mechanics model and constitutive equation of rock", Chin. J. Rock Mech. Eng., 20(4), 560-562.
- Sato, T., Kikuchi, T. and Sugihara, K. (2000), "In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan", Eng. Geol., 56(1-2), 97-108. https://doi.org/10.1016/S0013-7952(99)00136-2
- Schuster, K., Alheid, H.J. and Bodener, D. (2001), "Seismic investigation of the Excavation damaged zone in Opalinus Clay", Eng. Geol., 61(2-3), 189-197. https://doi.org/10.1016/S0013-7952(01)00054-0
- Sheng, Q., Yue, Z.Q., Lee, C.F., Tham, L.G. and Zhou, H. (2002), "Estimation the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China", Int. J. Rock Mech. Min., 39(2), 165-184. https://doi.org/10.1016/S1365-1609(02)00015-1
- SHIDI (2004), The reasonable layout and surrounding rock stability research of Baziling forked tunnel; The Second Highway Investigation and Design Institute (SHIDI), Report, Wuhan, China.
- Shih, V. (2004), "Development, the second time around: The political logic of developing western China", J. East Asian Stud., 4(3), 427-451. https://doi.org/10.1017/S1598240800006032
- Singh, M. and Singh, B. (2012), "Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks", Int. J. Rock Mech. Min. Sci., 51, 43-52. https://doi.org/10.1016/j.ijrmms.2011.12.007
- Taiebat, H.A. and Carter, J.P. (2008), "Flow rule effects in the Tresca model", Comput. Geotech., 35(3), 500-503. https://doi.org/10.1016/j.compgeo.2007.06.012
- Tang, C.A. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3
- Tecplot, Inc. (2013), Tecplot 360 User's Manual, Tecplot Inc., Bellevue, WA, USA.
- Voyiadjis, G.Z. and Park, T. (1999), "The kinematics of damage for finite-strain elasto-plastic solids", Int. J. Eng. Sci., 37(7), 803-830. https://doi.org/10.1016/S0020-7225(98)00100-1
- Wang, H.W., Jiang, Y.D., Xue, S., Shen, B.T., Wang, C., Lv, J.G. and Yang, T. (2015), "Assessment of excavation damaged zone around roadways under dynamic pressure induced by an active mining process", Int. J. Rock Mech. Min., 77, 265-277.
- Weibull, W. (1951), "A statistical distribution function of wide applicability", J. Appl. Mech., 103, 293-297.
- Wu, F.Q., Liu, J.Y., Liu, T., Zhuang, H.Z. and Yan, C.G. (2009), "A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case", Eng. Geol., 104(3-4), 254-4262. https://doi.org/10.1016/j.enggeo.2008.11.005
- Zhu, W.S., Zhang, Q.Y., Li, S.C. and Lee, C.F. (2003), "Brittle elastoplastic damage constitutive model for jointed Rock masses and computation concerning bolt-reinforcement", Int. J. Damage Mech., 12(1), 65-84. https://doi.org/10.1177/1056789503012001004
- Zhu, W.S., Li, Y., Li, S.C., Wang, S.G. and Zhang, Q.B. (2011), "Quasi-three-dimensional physical model tests on a cavern complex under high in-situ stresses", Int. J. Rock Mech. Min., 48(2), 199-209. https://doi.org/10.1016/j.ijrmms.2010.11.008
- Zienkiewicz, O.C., Chang, C.T. and Bettess, P. (1980), "Drained, undrained, consolidating dynamic behaviour assumptions in soils", Geotechnique, 30(4), 385-395. https://doi.org/10.1680/geot.1980.30.4.385
Cited by
- Jointed Surrounding Rock Mass Stability Analysis on an Underground Cavern in a Hydropower Station Based on the Extended Key Block Theory vol.10, pp.4, 2017, https://doi.org/10.3390/en10040563
- Energy Analysis of the Deformation and Failure Process of Sandstone and Damage Constitutive Model vol.23, pp.2, 2019, https://doi.org/10.1007/s12205-018-0789-9
- Field monitoring of splitting failure for surrounding rock masses and applications of energy dissipation model vol.12, pp.4, 2017, https://doi.org/10.12989/gae.2017.12.4.595
- Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D vol.20, pp.4, 2016, https://doi.org/10.12989/cac.2017.20.4.429
- Study of stability and evolution indexes of gobs under unloading effect in the deep mines vol.14, pp.5, 2016, https://doi.org/10.12989/gae.2018.14.5.439
- Study on the splitting failure of the surrounding rock of underground caverns vol.14, pp.5, 2018, https://doi.org/10.12989/gae.2018.14.5.499
- The effect of radial cracks on tunnel stability vol.15, pp.2, 2016, https://doi.org/10.12989/gae.2018.15.2.721
- Direct shear testing of brittle material samples with non-persistent cracks vol.15, pp.4, 2016, https://doi.org/10.12989/gae.2018.15.4.927
- Damage constitutive model of brittle rock considering the compaction of crack vol.15, pp.5, 2016, https://doi.org/10.12989/gae.2018.15.5.1081
- Tunnel lining load with consideration of the rheological properties of rock mass and concrete vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.053
- A plastic strain based statistical damage model for brittle to ductile behaviour of rocks vol.21, pp.4, 2020, https://doi.org/10.12989/gae.2020.21.4.349
- Effects of the Rock Bridge Ligament on Fracture and Energy Evolution of Preflawed Granite Exposed to Dynamic Loads vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/1016412
- Structural Behavior of Prefabricated Ecological Grid Retaining Walls and Application in a Highway in China vol.13, pp.5, 2016, https://doi.org/10.3390/sym13050746