DOI QR코드

DOI QR Code

Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete

  • Mastali, M. (ISISE, Department of Civil Eng., School of Eng., University of Minho) ;
  • Dalvand, A. (Department of Eng., Lorestan University) ;
  • Fakharifar, M. (Department of Civil, Architectural and Environmental Eng., Missouri University of Science and Technology)
  • Received : 2015.05.12
  • Accepted : 2016.03.08
  • Published : 2016.07.25

Abstract

Extensive experimental studies on remarkable mechanical properties Polypropylene Fibre Reinforced Self-compacting Concrete (PFRSCC) have been executed, including different fibre volume fractions of Polypropylene fibers (0.25%, 0.5%, 0.75%, and 1%) and different water to cement ratios (0.21, 0.34, 0.38, and 0.41). The experimental program was carried out by using two hundred and sixteen specimens to obtain the impact resistance and mechanical properties of PFRSCC materials, considering compressive strength, splitting tensile strength, and flexural strength. Statistical and analytical studies have been mainly focused on experimental data to correlate of mechanical properties of PFRSCC materials. Statistical results revealed that compressive, splitting tensile, and flexural strengths as well as impact resistance follow the normal distribution. Moreover, to correlate mechanical properties based on acquired test results, linear and nonlinear equations were developed among mechanical properties and impact resistance of PFRSCC materials.

Keywords

References

  1. Abdollahnejad, Z., Pacheco-Torgal, F., Félix, T., Tahri, W. and Aguiar, J.B. (2015), "Mix design, properties and cost analysis of fly ash-based geopolymer foam", Constr. Build. Mater., 80, 18-30. https://doi.org/10.1016/j.conbuildmat.2015.01.063
  2. ACI Committee 318 (1999), Building code requirements for structural concrete (ACI 318-99) and commentary (318R-99), Farmington Hills, MI: American Concrete Institute.
  3. ACI Committee 363 (1992), State-of-the art report on high strength concrete (ACI 363R-92), Farmington Hills, MI: American Concrete Institute.
  4. Ahmad, S.H. and Shah, S.P. (1985), "Structural properties of high strength concrete and its implications for precast prestressed concrete", PCI J., 30(6), 92-119. https://doi.org/10.15554/pcij.11011985.92.119
  5. Alberti, M.G., Enfedaque, A. and Gálvez, J.C. (2015), "Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete", Constr. Build. Mater., 85, 182-194. https://doi.org/10.1016/j.conbuildmat.2015.03.007
  6. American Society for Testing and Materials (ASTM) C496, (1994), Standard test method for splitting tensile strength of cylindrical concrete specimens, Detroit, American Concrete Institute.
  7. Arioglu, N., Girgin, Z.C. and Arιoglu, E. (2006), "Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion", ACI Mater. J., 103(1), 18-24.
  8. Badr, A., Ashour, A.F. and Platten, A.K. (2006), "Statistical variations in impact resistance of polypropylene fibre-reinforced concrete", Int. J. Impact Eng., 32(11), 1907-1920. https://doi.org/10.1016/j.ijimpeng.2005.05.003
  9. Balaguru, P. and Najm, H. (2004), "High-performance fiber-reinforced concrete mixture proportions with high fiber volume fractions", Mater. J., 101(4), 281-286.
  10. Balendran, R.V., Zhou, F.P., Nadeem, A. and Leung, A.Y.T. (2002), "Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete", Build. Envir., 37(12), 1361-1367. https://doi.org/10.1016/S0360-1323(01)00109-3
  11. Banthia, N. and Sheng, J. (1996), "Fracture toughness of micro-fiber reinforced cement composites", Cement Concrete Compos., 18(4), 251-269. https://doi.org/10.1016/0958-9465(95)00030-5
  12. Banthia, N. and Soleimani, S.M. (2005), "Flexural response of hybrid fiber-reinforced cementitious composites", ACI Mater. J., 102(6), 382.
  13. Banthia, N.P. (1987), "Impact resistance of concrete", Ph.D. thesis, University of British Columbia, Canada.
  14. Bayramov, F., Tasdemir, C. and Tasdemir, M.A. (2004), "Optimisation of steel fibre reinforced concretes by means of statistical response surface method", Cement Concrete Compos., 26(6), 665-675. https://doi.org/10.1016/S0958-9465(03)00161-6
  15. Benjamin, J.R. and Allin Cornell, C. (1970), Probability, Statistics, and Decision for Civil Engineers, Dover publication, New York, USA.
  16. Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978), "Statistics for experimenters", Wiley, USA.
  17. Brandt, A.M., Olek, J., Glinicki, M.A. and Leung, C.K.Y. (2012), "Brittle matrix composites 10", Institute of fundamental technological research Polish academy of sciences, 346-347.
  18. CEB-FIP model code for concrete structures, Evaluation of the time dependent behavior of concrete. Bulletin d' information No. 199. (1991), Lausanne: Comite Europe du Beton/Federation Internationale de Precontrainte.
  19. Dalvand, A., Sharbatdar, M.K., Kheyroddin, A. and Nikui, A. (2014), "Assessment of statistical variations in experimental impact resistance and mechanical properties of silica fume concrete", Sci. Iranica. Transact. A, Civil Eng., 21(5), 1577.
  20. Dhonde, H.B., Mo, Y.L., Hsu, T.T. and Vogel, J. (2007), "Fresh and hardened properties of selfconsolidating fiber-reinforced concrete", ACI Mater. J., 104(5), 491-500.
  21. Duzgun, O.A., Gul, R. and Aydin, A.C. (2005), "Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete", Mater. Lett., 59(27), 3357-3363. https://doi.org/10.1016/j.matlet.2005.05.071
  22. EN 12350-8 (2010), Testing fresh concrete. Part 8: Self-compacting concrete, Slump-flow test, UK.
  23. EN 12350-9 (2010), Testing fresh concrete. Part 9: Self-compacting concrete, V-funnel test, UK.
  24. Fakharifar, M., Dalvand, A., Arezoumandi, M., Sharbatdar, M.K., Chen, G. and Kheyroddin, A. (2014), "Mechanical properties of high performance fiber reinforced cementitious composites", Constr. Build. Mater., 71, 510-520. https://doi.org/10.1016/j.conbuildmat.2014.08.068
  25. Gupta, T., Sharma, R.K. and Chaudhary, S. (2015), "Impact resistance of concrete containing waste rubber fiber and silica fume", Int. J. Impact Eng., 83, 76-87. https://doi.org/10.1016/j.ijimpeng.2015.05.002
  26. Hwang, S., Song, P. and Sheu, B. (2003), "Impact resistance of Polypropylene Fibre-Reinforced concrete", C.C.I.T., 32, 1-13.
  27. Jiang, C., Fan, K., Wu, F. and Chen, D. (2014), "Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete", Mater. Des., 58, 187-193. https://doi.org/10.1016/j.matdes.2014.01.056
  28. Köksal, F., Altun, F., Yigit, İ. and sahin, Y. (2008), "Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes", Constr. Build. Mater., 22(8), 1874-1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017
  29. Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", Mater. J., 98(6), 483-492.
  30. Mastali, M. and Dalvand, D. (2016), "The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces", Compos. Part B Eng., 92, 360-376. https://doi.org/10.1016/j.compositesb.2016.01.046
  31. Mastali, M., Naghibdehi, M.G., Naghipour, M. and Rabiee, S.M. (2015), "Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts", Constr. Build. Mater., 95, 296-311. https://doi.org/10.1016/j.conbuildmat.2015.07.153
  32. Mindess, S. and Vondran, G. (1988), "Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading", Cement Concrete Res., 18(1), 109-115. https://doi.org/10.1016/0008-8846(88)90127-5
  33. Mohammadi, Y., Carkon-Azad, R., Singh, S.P. and Kaushik, S.K. (2009), "Impact resistance of steel fibrous concrete containing fibres of mixed aspect ratio", Constr. Build. Mater., 23(1), 183-189. https://doi.org/10.1016/j.conbuildmat.2008.01.002
  34. Mohammadi, Y., Singh, S.P. and Kaushik, S.K. (2008), "Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state", Constr. Build. Mater., 22(5), 956-965. https://doi.org/10.1016/j.conbuildmat.2006.12.004
  35. Moore, D.S. and McCabe, G.P. (1989), "Introduction to the practice of statistics", W.H. Freeman & Company, New York, USA.
  36. Naghibdehi, M.G., Mastali, M., Sharbatdar, M.K. and Naghibdehi, M.G. (2014), "Flexural performance of functionally graded RC cross-section with steel and PP fibres", Mag. Concrete Res., 66(5), 219-233. https://doi.org/10.1680/macr.13.00248
  37. Naghibdehi, M.G., Sharbatdar, M.K. and Mastali, M. (2014b), "Repairing reinforced concrete slabs using composite layers", Mater. Des., 58, 136-144. https://doi.org/10.1016/j.matdes.2014.02.015
  38. Oluokun, F. (1991), "Prediction of concrete tensile strength from its compressive strength: an evaluation of existing relations for normal weight concrete", Mater. J., 88(3), 302-309.
  39. Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A.F., Jamshidi, M. and Ding, Y. (2012b), "Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue?", Constr. Build. Mater., 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  40. Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S. and Ding, Y. (2012), "An overview on the potential of geopolymers for concrete infrastructure rehabilitation", Constr. Build. Mater., 36, 1053-1058. https://doi.org/10.1016/j.conbuildmat.2012.07.003
  41. Pacheco-Torgal, F., Ding, Y., Miraldo, S., Abdollahnejad, Z. and Labrincha, J.A. (2012), "Are geopolymers more suitable than Portland cement to produce high volume recycled aggregates HPC?", Constr. Build. Mater., 36, 1048-1052. https://doi.org/10.1016/j.conbuildmat.2012.07.004
  42. Rahmani, T., Kiani, B., Shekarchi, M. and Safari, A. (2012), "Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test", Constr. Build. Mater., 37, 360-369. https://doi.org/10.1016/j.conbuildmat.2012.07.068
  43. Sadrmomtazi, A. and Fasihi, A. (2010), "Influence of polypropylene fibers on the performance of nano-SiO2-incorporated mortar", Iran. J. Sci. Tech., 34(B4), 385.
  44. Sahmaran, M. and Yaman, I.O. (2007), "Hybrid fiber reinforced self-compacting concrete with a highvolume coarse fly ash", Constr. Build. Mater., 21(1), 150-156. https://doi.org/10.1016/j.conbuildmat.2005.06.032
  45. Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  46. Swamy, R.N. and Stavrides, H. (1976), "Some statistical considerations of steel fiber composites", Cement Concrete Res., 6(2), 201-216. https://doi.org/10.1016/0008-8846(76)90118-6
  47. Xu, B.W. and Shi, H.S. (2009), "Correlations among mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 23(12), 3468-3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017
  48. Yap, S.P., Alengaram, U.J. and Jumaat, M.Z. (2013), "Enhancement of mechanical properties in polypropylene-and nylon-fibre reinforced oil palm shell concrete", Mater. Des., 49, 1034-1041. https://doi.org/10.1016/j.matdes.2013.02.070
  49. Yap, S.P., Bu, C.H., Alengaram, U.J., Mo, K.H. and Jumaat, M.Z. (2014), "Flexural toughness characteristics of steel-polypropylene hybrid fibre-reinforced oil palm shell concrete", Mater. Des., 57, 652-659. https://doi.org/10.1016/j.matdes.2014.01.004
  50. Zain, M.F.M., Mahmud, H.B. and Ilham, A. (2002), "Prediction of splitting tensile strength of highperformance concrete", Cement Concrete Res., 32, 1251-1258. https://doi.org/10.1016/S0008-8846(02)00768-8

Cited by

  1. The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages vol.112, 2017, https://doi.org/10.1016/j.compositesb.2016.12.029
  2. Effect of specimen geometry and specimen preparation on the concrete compressive strength test vol.62, pp.1, 2016, https://doi.org/10.12989/sem.2017.62.1.097
  3. Relations between rheological and mechanical properties of fiber reinforced mortar vol.20, pp.4, 2016, https://doi.org/10.12989/cac.2017.20.4.449
  4. Case-based reasoning approach to estimating the strength of sustainable concrete vol.20, pp.6, 2017, https://doi.org/10.12989/cac.2017.20.6.645
  5. Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres vol.44, pp.4, 2016, https://doi.org/10.1007/s12046-019-1072-6
  6. Assessment of hybrid FRSC cementitious composite with emphasis on flexural performance of functionally graded slabs vol.250, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118904