References
- J. H. Yu, S. M. Park, K. E. Ko, and K. B. Sim, "Face classification using cascade facial detection and convolutional neural network," Proc. of Korean Institute of Intelligent Systems Fall Conference, vol. 25, no. 2, pp. 157-159, 2015.
- R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and J. G. Taylor, "Emotion recognition in human-computer interaction," IEEE Signal Processing Magazine, vol. 18, no. 1, pp. 32-80, Jan. 2001. https://doi.org/10.1109/79.911197
- M. Valstar, B. Martinez, X. Binefa, and M. Pantic, "Facial point detection using boosted regression and graph models," Proc. of 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2729-2736, 2010.
- M. F. Valstar, I. Patras, and M. Pantic, "Facial action unit detection using probabilistic actively learned support vector machines on tracked facial point data," Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 76-83, Jun. 2005.
- Y. Sun, X. Wang, and X. Tang, "Deep convolutional network cascade for facial point detection," Proc. of 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476-3483, Jun. 2013.
- S. Berretti, B. B. Amor, M. Daoudi, and A. Del Bimbo, "3D facial expression recognition using SIFT descriptors of automatically detected keypoints," The Visual Computer, vol. 27, pp. 1021-1036, Jun. 2011. https://doi.org/10.1007/s00371-011-0611-x
- J. Wang, R. Xiong, and J. Chu, "Facial feature points detecting based on Gaussian mixture models," Pattern Recognition Letters, vol. 53, no. 1, pp. 62-68, Feb. 2015. https://doi.org/10.1016/j.patrec.2014.11.004
- E. Owusu, Y. Zhan, and Q. R. Mao, "An SVM-AdaBoost facial expression recognition system," Applied Intelligence, vol. 40, no. 3, pp. 536-545, Apr. 2014. https://doi.org/10.1007/s10489-013-0478-9
- Y. M. Hong, I. S. Lee, J. S. Park, Y. S. Jo, and C. B. Kim, "Improvement in viola-jones method for real-time face recognition system," The Korean Institute of Electrical Engineers (in Korean), vol. 61, no. 1, pp. 143-147, 2012. https://doi.org/10.5370/KIEE.2012.61.1.143
- W. Burgin, C. Pantofaru, and W. D. Smart, "Using depth information to improve face detection," Proc. of the 6th International Conference on Human-Robot Interaction, NewYork, USA, pp. 119-120, 2011.
- A. Jain, J. Bharti, and M. K. Gupta, "Improvements in OpenCV's viola jones algorithm in face detection-tilted face detection," International Journal on Signal and Image Processing, vol. 5, no. 2, pp. 21-28, 2014.
- P. Viola and M. Jones "Rapid object detection using a boosted cascade of simple features," Proc. of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.
- R. Lienhart, A. Kuranov, and V. Pisarevsky, "Empirical analysis of detection cascades of boosted classifiers for rapid object detection," Pattern Recognition, vol. 2781, pp. 297-304, Sep. 2003.
- A Jain, J. Bharti, M. K. Gupta, "Improvements in OpenCV's viola jones algorithm in face detection-tilted face detection," International journal of Signal and Image Processing, vol. 5, pp. 21-28, 2014.
- W. Wang, J. Yang, J. Xiao, S. Li and D. Zhou, "Face recognition based on deep learning," Human Centered Computing, vol. 8944, pp. 812-820, Mar. 2015.
- Y. K. Park, J. K. Park, H. I. On, and D. J. Kang, "Convolutional neural network-based system for vehicle front-side detection," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 21, no. 11, pp. 1008-1016, 2015. https://doi.org/10.5302/J.ICROS.2015.15.0163
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 2015.
- D. M. Kwak, S. W. Park, and H. N. Lee, Machine Learning to Deep Learning, PubPle, Seoul, 2015.
- Y. L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in visual recognition," Proc. of the 27th International Conference on Machine Learning, pp. 1-8, 2010.
-
Y. Bengio, "Learning deep architectures for AI," Foundations and
$Trends^{(R)}$ in Machine Learning, vol. 2, no. 1, pp. 1-127, Jan. 2009. https://doi.org/10.1561/2200000006 - R. Hecht-Nielsen, "Theory of the backpropagation neural network," International Joint Conference on Neural Networks, vol. 1, pp. 593-605, 1989.
- https://en.wikipedia.org/wiki/YUV
Cited by
- Mobile Robot Control using Smart Phone for internet of Things vol.26, pp.5, 2016, https://doi.org/10.5391/JKIIS.2016.26.5.396
- Dictionary learning feature space via sparse representation classification for facial expression recognition pp.1573-7462, 2017, https://doi.org/10.1007/s10462-017-9554-6