DOI QR코드

DOI QR Code

Effect of recycled glass powder on asphalt concrete modification

  • Bilondi, M. Pourabbas (Department of Civil Engineering, Shahid Bahonar University of Kerman) ;
  • Marandi, S.M. (Department of Civil Engineering, Shahid Bahonar University of Kerman) ;
  • Ghasemi, F. (Department of Civil Engineering, Graduate University of Advanced Technology)
  • 투고 : 2015.02.05
  • 심사 : 2016.05.27
  • 발행 : 2016.07.25

초록

During recent years researchers performed large effort to increase the service life and asphalt stability of the roads against traffic loads and weather conditions. Investigations carried out in various aspects such as changes in gradation, addition of various additives, changes in asphalt textures and etc. The objective of this research is to evaluate the advantages of adding recycled glass powder (RGP), Crumb Rubber (CR), styrene-butadiene rubber (SBR) and styrene butadiene styrene (SBS) to base bitumen with grade of 60/70 for modification of asphalt concrete. Initial studies conducted for determining the physical properties of bitumen and modifiers. A series of asphalt concrete samples made using various combinations of RGP, CR, SBR, SBS and base bitumen. All samples tested using Indirect Tensile Strength (ITS), Indirect Tensile Strength Modulus (ITSM) and Marshall Stability Tests. The new data compared with the results of control samples. The results showed that replacing RGP with known polymers improved ITS and ITSM results considerably. Also the Marshall Stability of modified mixtures using RGP is more than what is found for the base blend. Ultimately, the new RGP modifier had a huge impact on pavement performance and results in high flexibility which can be concluded as high service life for the new modified asphalt concrete.

키워드

참고문헌

  1. AASHTO T283 (2007), Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-induced Damage, American Association of State and Highway Transportation Officials.
  2. Airey, G.D. (2003), "Rheological properties of styrene butadiene styrene polymer modified road bitumens", Fuel, 82(14), 1709-19. https://doi.org/10.1016/S0016-2361(03)00146-7
  3. Airey, G.D., Singleton T.M. and Collop J. (2002), "Properties of polymer modified bitumen after rubberbitumen interaction", J. Mater. Civil Eng., 14(4), 344-354. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:4(344)
  4. Ayatollahi, M.R. and Pirmohammad, S. (2013), "Temperature effects on brittle fracture in cracked asphalt concrete", Struct. Eng. Mech., 45(1), 19-32. https://doi.org/10.12989/sem.2013.45.1.019
  5. Baskandi, B. (2015), "Influence of construction parameters on performance of dense graded bituminous mixes", IOSR J. Mech. Civil Eng., 12(1), 64-78.
  6. Chunfa, O., Qun, G., Yutao, S. and Xiaoqian. S. (2012), "Compatibilizer in waste tire powder and lowdensity polyethylene blends and the blends modified asphalt", Appl. Polym., 123(1), 485-492. https://doi.org/10.1002/app.34634
  7. Colom, X., Carrillo, F. and Canavate, J. (2007), "Composites reinforced with reused tyres: surface oxidant treatment to improve the interfacial compatibility", Compos. Part A, 38(1), 44-50. https://doi.org/10.1016/j.compositesa.2006.01.022
  8. Cong, Y., Liao, K., Huang, W. and Zhai, Y. (2006), "Study on technical parameters of SBS modified asphalt", Petrol Sci. Technol., 24(5), 507-12. https://doi.org/10.1081/LFT-200041087
  9. Cortizo, M.S., Larsen, D.O. and Bianchetto, H. (2004), "Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts", Polym. Degrad. Stab., 86(2), 275-282. https://doi.org/10.1016/j.polymdegradstab.2004.05.006
  10. Hossain, M., Swartz, S. and Hoque, E. (1999), "Fracture and tensile characteristics of asphalt-rubber concrete", J. Mater. Civil Eng., 11(4), 287-294. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(287)
  11. Huang B., Li, G. and Shu, X. (2003), "Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures", Compos. Part B., 34(8), 705-714. https://doi.org/10.1016/S1359-8368(03)00079-9
  12. Liang, J.F., Yang, Z.P., Yi, P.H. and Wang, J.B. (2015), "Mechanical properties of Recycled Fine Glass aggregate concrete under uniaxial loading", Comput. Concrete, 16(2), 275-285. https://doi.org/10.12989/cac.2015.16.2.275
  13. Lu, X.H. and Isacsson, U. (1997), "rheological characterization of styrene-butadiene-styrene copolymer modified bitumens", Constr. Build Mater., 11(1), 23-32. https://doi.org/10.1016/S0950-0618(96)00033-5
  14. Lu, X.H. and Isacsson, U. (1998), "Chemical and rheological evaluation of aging properties of SBS polymer modified bitumens", Fuel, 77(9-10), 961-972. https://doi.org/10.1016/S0016-2361(97)00283-4
  15. Ma, F., Sha, A., Lin, R., Huang, Y. and Wang, C. (2016), "Greenhouse gas emissions from asphalt pavement construction: a case study in China", Int. J. Environ. Res. Public Hlth., 13(3), 351. https://doi.org/10.3390/ijerph13030351
  16. Morales, M.G., Partal, P., Navarro, F.J., Boza, M. and Gallegos, C. (2007), "Processing, rheology, and storage stability of recycled EVA/LDPE modified bitumen", Polym. Eng. Sci., 47(2), 181-91. https://doi.org/10.1002/pen.20697
  17. Mull, M.A., Stuart, K. and Yehia, A. (2002), "Fracture resistance characterization of chemically modified crumb Rubber asphalt pavement", J. Mater. Sci., 37(3), 557-566. https://doi.org/10.1023/A:1013721708572
  18. Navarro, F.J., Partal, P., Martinez-Boza, F.J. and Gallegos, C. (2010), "Novel recycled polyethylene/ground tire rubber /bitumen blends for use in roofing applications: thermo-mechanical properties", Polym. Test., 29(5), 588-595. https://doi.org/10.1016/j.polymertesting.2010.03.010
  19. Navarro, F.J., Partal, P., Martinez-Boza, F. and Gallegos, C. (2004), "Thermo-rheo-logical behavior and storage stability of ground tire rubber-modified bitumens", Fuel., 83, 2041-2049. https://doi.org/10.1016/j.fuel.2004.04.003
  20. Navarro, F.J., Partal, P., Martinez-Boza, F. and Gallegos, C. (2005), "Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen", Energy Fuel., 19(5), 1984-1990. https://doi.org/10.1021/ef049699a
  21. Ouyang, C., Wang, S.F. and Zhang, Y. (2006), "Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts", Eur. Polym. J., 42(2), 446-57. https://doi.org/10.1016/j.eurpolymj.2005.07.004
  22. Pirmohammad, S. and Kiani, A. (2016), "Impact of temperature cycling on fracture resistance of asphalt concretes", Comput. Concrete, 17(4), 541-552. https://doi.org/10.12989/cac.2016.17.4.541
  23. Pradyumna, T.A., Mittal, A. and Jain, P.K. (2013), "Characterization of Reclaimed Asphalt Pavement (RAP) for use in bituminous road construction", Procedia-Soc. Behav. Sci., 104, 1149-1157. https://doi.org/10.1016/j.sbspro.2013.11.211
  24. Qadir, A. and Qadir, A. (2014), "Rutting performance of polypropylene modified asphalt concrete", IJCE, 12(3), 304-312.
  25. Rogue, R., Zhang, Z. and Sankar, B. (1998), "Determination of crack growth rate parameters of asphalt mixtures using the superpave indirect tension test", IDT. J Asphalt Paving Technol., 68, 404-33.
  26. Sadeghpour Galooyak, S., Dabir, B., Nazarbeygi, A.E. and Moeini, A. (2010), "Rheological properties and storage stability of bitumen / SBS / montmorillonite composites", Constr. Build. Mater., 24(3), 300-307. https://doi.org/10.1016/j.conbuildmat.2009.08.032
  27. Shu, X. and Huang, B. (2008), "Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures", Compos. Part B., 398(4), 704-713.
  28. Sun, D. and Lu, W. (2006), "Phase morphology of polymer modified road asphalt", Petrol Sci. Technol., 24(7), 839-49. https://doi.org/10.1081/LFT-200043780
  29. Wen, G., Zhang, Y. and Zhang, Y.X. (2002), "Rheological characterization of storage-stable SBS-modified asphalt", Polym Test., 21(3), 295-302. https://doi.org/10.1016/S0142-9418(01)00086-1
  30. Zhang, Z., Rogue, R., Birgisson, B. and Sangpetngam, B. (2001), "Identification and verification of a suitable crack growth law", J. Asphalt Pav. Technol., 70, 206-41.

피인용 문헌

  1. Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement vol.62, pp.3, 2016, https://doi.org/10.12989/sem.2017.62.3.357
  2. Effect of using recycled coarse aggregate and recycled asphalt pavement on the properties of pervious concrete vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.283
  3. Effects of Brick Powder on the Properties of Asphalt Mixes vol.33, pp.1, 2021, https://doi.org/10.1061/(asce)mt.1943-5533.0003531
  4. Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete vol.11, pp.5, 2021, https://doi.org/10.3390/cryst11050558