참고문헌
- Akgoz, B. and Civalek, O. (2014), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct, 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
- Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Mech. Sci., 85, 90-104.
- Atmane, H.A., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 1-14.
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Civalek, O. and Kiracioglu, O. (2010), "Free vibration analysis of Timoshenko beams by DSC method", Int. J. Numer. Meth. Biomed. Eng., 26(12), 1890-1898.
- Ebrahimi, F. and Mokhtari, M. (2014), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Braz. Soc. Mech. Sci. Eng., 1-10.
- Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2015), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249.. https://doi.org/10.1007/s11012-015-0208-y
- Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol, 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
- Ebrahimi, F., Rastgoo, A. and Atai, A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech-A/Solid., 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008
- Hassan, I.A.H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127(1), 1-22. https://doi.org/10.1016/S0096-3003(00)00123-5
- Jha, D., Kant, T. and Singh, R. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
- Ju, S.P. (2004), "Application of differential transformation to transient advective-dispersive transport equation", Appl. Math. Comput., 155(1), 25-38. https://doi.org/10.1016/S0096-3003(03)00755-0
- Kiani, Y. and Eslami, M. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
- Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, M.R. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041
- Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006
- Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theor. Appl. Mech., 47, 421-433.
- Magnucka-Blandzi, E. (2010), "Non-linear analysis of dynamic stability of metal foam circular plate", J. Theor. Appl. Mech., 48(1), 207-217.
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 1-19.
- Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
- simsek, M. and T. Kocaturk, (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Tauchert, T.R. (1974), Energy Principles in Structural Mechanics, McGraw-Hill Co.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Touloukian, Y.S. (1966), "Thermophysical properties of high temperature solid materials", 4, Oxides and Their Solutions and Mixtures, Part I. Simple Oxyg. Compd. Mix., DTIC Document.
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50(5), 1-12. https://doi.org/10.1007/s11012-014-0082-z
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
- Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020
- Xiang, H. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B: Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143. https://doi.org/10.12989/sem.2015.53.6.1143
피인용 문헌
- Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0542-5
- A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities vol.25, pp.3, 2018, https://doi.org/10.1080/15376494.2016.1255820
- Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.455
- Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory vol.32, pp.2, 2018, https://doi.org/10.1080/09205071.2017.1369903
- Effect of Porosity on Flexural Vibration of CNT-Reinforced Cylindrical Shells in Thermal Environment Using GDQM vol.18, pp.10, 2018, https://doi.org/10.1142/S0219455418501237
- Imperfection sensitivity in the vibration behavior of functionally graded arches by considering microstructural defects pp.2041-2983, 2018, https://doi.org/10.1177/0954406218792584
- Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam vol.63, pp.4, 2016, https://doi.org/10.12989/sem.2017.63.4.481
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.121
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.281
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2016, https://doi.org/10.12989/sss.2017.20.6.709
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2016, https://doi.org/10.12989/sem.2018.66.6.729
- A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.099
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2016, https://doi.org/10.12989/was.2018.27.1.059
- A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2016, https://doi.org/10.12989/sem.2018.67.4.369
- Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method vol.69, pp.2, 2016, https://doi.org/10.12989/sem.2019.69.2.205
- Buckling Temperature and Natural Frequencies of Thick Porous Functionally Graded Beams Resting on Elastic Foundation in a Thermal Environment vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/7986569
- Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment vol.8, pp.1, 2016, https://doi.org/10.12989/anr.2020.8.1.083
- A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments vol.75, pp.2, 2020, https://doi.org/10.12989/sem.2020.75.2.193
- Current challenges in modelling vibrational fatigue and fracture of structures: a review vol.43, pp.2, 2021, https://doi.org/10.1007/s40430-020-02777-6
- Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories vol.10, pp.3, 2016, https://doi.org/10.12989/anr.2021.10.3.235
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2016, https://doi.org/10.12989/scs.2021.39.1.095
- Characterising Modal Behaviour of a Cantilever Beam at Different Heating Rates for Isothermal Conditions vol.11, pp.10, 2016, https://doi.org/10.3390/app11104375
- Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller vol.28, pp.2, 2016, https://doi.org/10.12989/sss.2021.28.2.195
- Non-linear free vibrations of the column loaded with a mass element and a local heat source vol.507, pp.None, 2021, https://doi.org/10.1016/j.jsv.2021.116130