DOI QR코드

DOI QR Code

A new analytical approach for optimization design of adhesively bonded single-lap joint

  • Elhannani, M. (LMPM, Department of Mechanical Engineering, University of Sidi Bel-Abbes) ;
  • Madani, K. (LMPM, Department of Mechanical Engineering, University of Sidi Bel-Abbes) ;
  • Mokhtari, M. (LMPM, Department of Mechanical Engineering, University of Sidi Bel-Abbes) ;
  • Touzain, S. (LaSIE, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, La Rochelle University) ;
  • Feaugas, X. (LaSIE, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, La Rochelle University) ;
  • Cohendoz, S. (LaSIE, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, La Rochelle University)
  • Received : 2015.03.25
  • Accepted : 2016.05.24
  • Published : 2016.07.25

Abstract

In this study the three-dimensional nonlinear finite element method was used to analyze the stresses distribution in the adhesive layer used to joint two Aluminum 2024-T3 adherends. We consider in this study the effect of different parameters witch directly affect the values of different stresses. The experimental design method is used to investigate the effects of geometrical parameters of the single lap joint in order to achieve an optimization of the assembly with simple lap joint. As a result, it can be said that both the geometrical modifications of the adhesive and adherends edge have presented a significant effect at the overlap edge thereby causing a decrease in peel and shear stresses. In addition, an analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the geometrical parameters. This approach can help the designers to improve the quality and the durability of the structural adhesive joints.

Keywords

References

  1. ABAQUS/CAE (2009), Ver 6.9 User's Manual, Hibbitt, Karlsson and Sorensen, Inc.
  2. Adams, R., Atkins, R., Harris, J. and Kinloch, A. (1986), "Stress analysis and failure properties of carbonfibre reinforced plastic/steel double lap-joint", J. Ahdes., 20, 29-30.
  3. Adams, R.D. and Peppiatt, N.A. (1974), "Stress analysis of adhesive-bonded lap joints", J. Strain Anal., 9(3), 185-196. https://doi.org/10.1243/03093247V093185
  4. Akpinar, S. (2014), "The strength of the adhesively bonded step-lap joints for different step numbers", Compos. Part B, 67, 170-178. https://doi.org/10.1016/j.compositesb.2014.06.023
  5. Benchiha, A. and Madani, K. (2015), "Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint", Struct. Eng. Mech., 53(5), 1017-1030. https://doi.org/10.12989/sem.2015.53.5.1017
  6. Campilho, R.D.S.G., de Moura, M.F.S.F. and Domingues, J.J.M.S. (2009), "Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes", Int. J. Adhes. Adhes., 29, 195-205. https://doi.org/10.1016/j.ijadhadh.2008.03.005
  7. Campilho, R.D.S.G., de Moura, M.F.S.F., Domingues, J.J.M.S. and Morais, J.J.L. (2008), "Computational modelling of the residual strength of repaired composite laminates using a cohesive damage model", J. Adhes. Sci. Technol., 22(13), 1565-1591. https://doi.org/10.1163/156856108X309576
  8. da Silva, L.F. and Adams, R.D. (2007), "Techniques to reduce the peel stresses in adhesive joints with composites", Int. J Adhes. Adhes., 27, 227-235. https://doi.org/10.1016/j.ijadhadh.2006.04.001
  9. da Silva, L.F., das Neves, P.J., Adams, R. and Spelt, J. (2009), "Analytical models of adhesively bonded joints-Part I: Literature survey", Int. J. Adhes. Adhes., 29, 319-330. https://doi.org/10.1016/j.ijadhadh.2008.06.005
  10. da Silva, L.F., das Neves, P.J., Adams, R., Wang, A. and Spelt, J. (2009), "Analytical models of adhesively bonded joints-Part II: Comparative study", Int. J. Adhes. Adhes., 29, 331-341. https://doi.org/10.1016/j.ijadhadh.2008.06.007
  11. Dorn, L. and Liu, W. (1993), "The stress state and failure properties of adhesive-bonded plastic/metal joints", Int. J. Adhes. Adhes., 13(1), 21-31. https://doi.org/10.1016/0143-7496(93)90005-T
  12. Grant, L.D.R., Adams, R.D. and da Silva, L.F.M. (2009), "Experimental and numerical modeling of singlelap joints for the automotive industry", Int. J. Adhes. Adhes., 29, 405-413. https://doi.org/10.1016/j.ijadhadh.2008.09.001
  13. Halioui, M. (1990), "Contribution a l'evolution du comportement mecanique non-lineaire d'assemblages colles de toles minces d'acier sous sollicitations monotones ou cycliques", PhD. Universite de Reins.
  14. Higgins, A. (2000), "Adhesive bonding of aircraf structures", Int. J. Adhes. Adhes., 20, 367-76. https://doi.org/10.1016/S0143-7496(00)00006-3
  15. Hildebrand, M. (1994), "Non-linear analysis and optimization of adhesively bonded single lap joints between fibre-reinforced plastics and metals", Int. J. Adhes. Adhes., 14(4), 261-267. https://doi.org/10.1016/0143-7496(94)90039-6
  16. Karachalios, E.F., Adams, R.D. and da Silva, L.F.M. (2013), "Single lap joints loaded in tension with high strength steel adherends", Int. J. Adhes. Adhes., 43, 81-95. https://doi.org/10.1016/j.ijadhadh.2013.01.016
  17. Karachalios, E.F., Adams, R.D. and da Silva, L.F.M. (2013), "The behaviour of single lap joints under bending loading", J. Adhes. Sci. Technol., 27(16), 1811-1827. https://doi.org/10.1080/01694243.2012.761926
  18. Kumar, S. and Pandey, P.C. (2010), "Behaviour of bi-adhesive joints", J. Adhes. Sci. Technol., 24, 1251-81. https://doi.org/10.1163/016942409X12561252291982
  19. Li, G. and Li, C. (2014), "Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints", Adv. Aircraft Spacecraft Sci., 1(2), 177-196. https://doi.org/10.12989/aas.2014.1.2.177
  20. Madani, K., Boukhoulda, B.F., Touzain, S. and Feaugas, X. (2009), "Numerical analysis of the notch effect on tangential stress distribution of the adhesive layer used for bonding two aluminum adherend 2024-T3", Comptes Rendus des JNC 16-Toulouse, France.
  21. Madani, K., Mokhtari, M., Belhouari, M. and El hannani, M. (2013), "Effect of modifying the edges of the adherents and the adhesive on the stress distribution over the width and length of recovery, case of a single lap joint", Int. J. Min. Metal. Mech. Eng., 4(1), 262-267.
  22. MODDE 6.0 (Moeeling and Design) Umetrics AB, Umea, Sweden.
  23. Pinto, A.M.G., Campilho, R.D.S.G., Mendes, I.R. and Baptista, A.P.M. (2014), "Numerical and experimental analysis of balanced and unbalanced adhesive single-lap joints between aluminium adherends", J. Adhes., 90(1), 89-103. https://doi.org/10.1080/00218464.2013.773258
  24. Tsai, M.Y. and Morton, J. (1995), "The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints", Compos. Struct., 32,123-131. https://doi.org/10.1016/0263-8223(95)00059-3
  25. Turuga, U. and Sun, C.T. (2008), "Improved design for metallic and composite single-lap joints", J. Aircraft, 45(2), 440-447. https://doi.org/10.2514/1.28934
  26. Zeng, Q.G. and Sun, C.T. (2001), "Novel design of a bonded lap joint", AIAA J., 39(10), 1991-1996. https://doi.org/10.2514/2.1191
  27. Zhao, X., Adams, R.D. and da Silva, L.F.M. (2011), "Single lap joints with rounded adherend corners:experimental results and strength prediction", J. Adhes. Sci. Technol., 25(8), 837-56.

Cited by

  1. Numerical analysis of the effect of the presence, number and shape of bonding defect on the shear stresses distribution in an adhesive layer for the single-lap bonded joint; Part 1 vol.62, 2017, https://doi.org/10.1016/j.ast.2016.11.024
  2. Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch vol.63, pp.3, 2016, https://doi.org/10.12989/sem.2017.63.3.361
  3. Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate vol.4, pp.6, 2016, https://doi.org/10.12989/aas.2017.4.6.679
  4. Geometrical parameters optimizations of scarf and double scarf bounded joint vol.5, pp.3, 2016, https://doi.org/10.12989/aas.2018.5.3.401
  5. Damage of bonded, riveted and hybrid (bonded/riveted) joints, Experimental and numerical study using CZM and XFEM methods vol.5, pp.5, 2016, https://doi.org/10.12989/aas.2018.5.5.595
  6. Comparative study of the resistance of bonded, riveted and hybrid assemblies; Experimental and numerical analyses vol.70, pp.4, 2016, https://doi.org/10.12989/sem.2019.70.4.467
  7. Using CZM and XFEM to predict the damage to aluminum notched plates reinforced with a composite patch vol.15, pp.2, 2020, https://doi.org/10.2140/jomms.2020.15.185
  8. Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites vol.35, pp.3, 2020, https://doi.org/10.12989/scs.2020.35.3.439
  9. Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure vol.74, pp.6, 2020, https://doi.org/10.12989/sem.2020.74.6.723
  10. Performance assessment and optimization of hybrid composite patch repair of aircraft structure vol.16, pp.5, 2016, https://doi.org/10.1108/mmms-03-2019-0052