Acknowledgement
Supported by : Samsung Science and Technology Foundation
References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with formulas, graphs, and mathematical tables, Number 55, Courier Dover Publications, 1972.
- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
- V. V. Anh and N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys. 104 (2001), no. 5-6, 1349-1387. https://doi.org/10.1023/A:1010474332598
- B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of barnes-integrals, Compositio Math. 15 (1964), 239-341.
- Z.-Q. Chen, K.-H. Kim, and P. Kim, Fractional time stochastic partial differential equations, Stochastic Process. Appl. 125 (2015), no. 4, 1470-1499. https://doi.org/10.1016/j.spa.2014.11.005
- Z.-Q. Chen, M. M. Meerschaert, and E. Nane, Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl. 393 (2012), no. 2, 479-488. https://doi.org/10.1016/j.jmaa.2012.04.032
- P. Clement, G. Gripenberg, and S.-O. Londen, Schauder estimates for equations with fractional derivatives, Trans. Amer. Math. Soc. 352 (2000), no. 5, 2239-2260. https://doi.org/10.1090/S0002-9947-00-02507-1
- P. Clement, S.-O. Londen, and G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Differential Equations 196 (2004), no 2, 418-447. https://doi.org/10.1016/j.jde.2003.07.014
- S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Operator Theory: Advances and Applications, 152. Birkhauser Verlag, Basel, 2004.
- S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations 199 (2004), no. 2, 211-255. https://doi.org/10.1016/j.jde.2003.12.002
- R. Goreno, A. Iskenderov, and Y. Luchko, Mapping between solutions of fractional diffusion-wave equations, Fract. Calc. Appl. Anal. 3 (2000), no. 1, 75-86.
- A. Hanyga, Multidimensional solutions of space-time-fractional diffusion equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), no. 2020, 933-957. https://doi.org/10.1098/rspa.2001.0904
- S. Jo and M. Yang, Precise asymptotic approximations for kernels corresponding to Levy processes, Potential Anal. 40 (2014), no. 3, 203-230. https://doi.org/10.1007/s11118-013-9346-9
- A. A. Kilbas, H-transforms: Theory and Applications, CRC Press, 2004.
-
I. Kim and K.-H. Kim, A generalization of the Littlewood-Paley inequality for the fractional Laplacian
$(-{\Delta})^{{\alpha}/2}$ , J. Math. Anal. Appl. 388 (2012), no. 1, 175-190. https://doi.org/10.1016/j.jmaa.2011.11.031 -
I. Kim, K.-H. Kim, and P. Kim, Parabolic Littlewood-Paley inequality for
${\phi}(-{\Delta})$ -type operators and applications to stochastic integro-differential equations, Adv. Math. 249 (2013), 161-203. https://doi.org/10.1016/j.aim.2013.09.008 -
I. Kim, K.-H. Kim, and S. Lim, An
$L_q(L_p)$ -theory for the time fractional evolution equations with variable coecients, arXiv preprint arXiv:1505.00504, 2015. -
I. Kim, K.-H. Kim, and S. Lim, An
$L_q(L_p)$ -theory for parabolic pseudo-differential equations, Calderon-Zygmund approach, arXiv preprint arXiv:1503.04521, 2015. - I. Kim, K.-H. Kim, and S. Lim, Parabolic BMO estimates for pseudo-differential operators of arbitrary order, J. Math. Anal. Appl. 427 (2015), no. 2, 557-580. https://doi.org/10.1016/j.jmaa.2015.02.065
- A. N. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation, Fract. Calc. Appl. Anal. 17 (2014), no. 3, 881-896. https://doi.org/10.2478/s13540-014-0203-3
-
N. V. Krylov, On the foundation of the
$L_p)$ -theory of stochastic partial differential equations, Stochastic Partial Differential Equations and Applications-VII, page 179-191, 2006. - Z. Li, Y. Luchko, and M. Yamamoto, Asymptotic estimates of solutions to initial- boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal. 17 (2014), no. 4, 1114-1136. https://doi.org/10.2478/s13540-014-0217-x
- M. Magdziarz and R. Schilling, Asymptotic properties of Brownian motion delayed by inverse subordinators, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4485-4501. https://doi.org/10.1090/proc/12588
- F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear Waves in Solids, pages 93-97, Fairfield, 1995.
- M. M. Meerschaert, R. L. Schilling, and A. Sikorskii, Stochastic solutions for fractional wave equations, Nonlinear Dynam. 80 (2015), no. 4, 1685-1695. https://doi.org/10.1007/s11071-014-1299-z
- R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker-planck equation approach, Phys. Rev. Lett. 82 (1999), no. 18, 3563. https://doi.org/10.1103/PhysRevLett.82.3563
- R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), no. 1-2, 107-125. https://doi.org/10.1016/S0378-4371(99)00503-8
- R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 1-77. https://doi.org/10.1016/S0370-1573(00)00070-3
- R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, 161-208. https://doi.org/10.1088/0305-4470/37/1/011
- I. Podlubny, Fractional Differential Equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198, Academic press, 1998.
- A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions, volume 2, CRC Press, 1998.
- K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426-447. https://doi.org/10.1016/j.jmaa.2011.04.058
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York, 1993.
- W. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), no. 1, 134-144. https://doi.org/10.1063/1.528578
- E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, volume 1, Princeton university press, 1971.
- J. van Neerven, M. Veraar, L. Weis, et al., Stochastic maximal lp-regularity, The Annals of Probability 40 (2012), no. 2, 788-812. https://doi.org/10.1214/10-AOP626
-
R. Zacher, Maximal regularity of type
$L_p$ for abstract parabolic Volterra equations, J. Evol. Equ. 5 (2005), no. 1, 79-103. https://doi.org/10.1007/s00028-004-0161-z
Cited by
- Representation of solutions and large-time behavior for fully nonlocal diffusion equations vol.263, pp.1, 2017, https://doi.org/10.1016/j.jde.2017.02.030
- Some Compactness Criteria for Weak Solutions of Time Fractional PDEs vol.50, pp.4, 2018, https://doi.org/10.1137/17M1145549
- A Time-Fractional Borel–Pompeiu Formula and a Related Hypercomplex Operator Calculus pp.1661-8262, 2019, https://doi.org/10.1007/s11785-018-00887-7