Acknowledgement
Supported by : National Research Foundation of Korea, JSPS
References
- F. E. Browder, On the spectral theory of elliptic differential operators I, Math. Ann. 142 (1961), 22-130. https://doi.org/10.1007/BF01343363
- K.-J. Engel and R. Nagel, One-Parameter Semigroups of Linear Evolution Equations, Springer, 1999.
- J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 1993.
- E. Hille and R. S. Phillip, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R. I., 1957.
- R. Miyazaki, D. Kim, T. Naito, and J. S. Shin, Fredholm operators, evolution semigroups, and periodic solutions of nonlinear periodic systems, J. Differential Equations 257 (2014), no. 11, 4214-4247. https://doi.org/10.1016/j.jde.2014.08.007
- R. Miyazaki, D. Kim, T. Naito, and J. S. Shin, Generalized eigenspaces of generators of evolution semigroups, to appear in J. Math. Anal. Appl..
- R. Miyazaki, D. Kim, T. Naito, and J. S. Shin, Solutions of higher order inhomogeneous periodic evolutionary process, in preparation.
- T. Naito and N. V. Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Differential Equations 152 (1999), no. 2, 358-376. https://doi.org/10.1006/jdeq.1998.3531
- T. Naito and J. Shin, On solution semigroups of functional differential equations, RIMS Kokyuuroku 940 (1996), 161-175.
- J. S. Shin and T. Naito, Representations of solutions, translation formulae and as-ymptotic behavior in discrete linear systems and periodic continuous linear systems, Hiroshima Math. J. 44 (2014), no. 1, 75-126.
- J. S. Shin, T. Naito, and N. V. Minh, On stability of solutions in linear autonomous functional differential equations, Funkcial. Ekvac. 43 (2000), no. 2, 323-337.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
- A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley-Sons. Inc., 1980.
- C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 394-418.
- G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Pure and Appl. Math. Vol.89, Dekker, 1985.