참고문헌
- A. Agrachev, Rolling balls and octonions, Proc. Steklov Inst. Math. 258 (2007), no. 1, 13-22. https://doi.org/10.1134/S0081543807030030
- A. Agrachev and Y. Sachkov, Control theory from the geometric viewpoint, Encyclopae-dia of Mathematical Sciences, 87, Control Theory and Optimization II, Springer-Verlag, Berlin, 2004.
- R. L. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), no. 2, 435-461. https://doi.org/10.1007/BF01232676
- A. Chelouah and Y. Chitour, On the motion planning of rolling surfaces, Forum Math. 15 (2003), no. 5, 727-758. https://doi.org/10.1515/form.2003.039
- Y. Chitour and P. Kokkonen, Rolling of manifolds and controllability in dimension three, in Memoires de la Societe Mathematique de France, 2015.
- M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice-Hall Englewood Cliffs, 1976.
- M. Godoy Molina, E. Grong, I. Markina, and F. Silva Leite, An intrinsic formulation of the problem on rolling manifolds, J. Dyn. Control Syst. 18 (2012), no. 2, 181-214. https://doi.org/10.1007/s10883-012-9139-2
- E. Grong, Controllability of rolling without twisting or slipping in higher dimensions, SIAM J. Control Optim. 50 (2012), no. 4, 2462-2485. https://doi.org/10.1137/110829581
- V. Jurdjevic, The geometry of the plate-ball problem, Archive for Rational Mechanics and Analysis 124 (1993), no. 4, 305-328. https://doi.org/10.1007/BF00375605
- V. Jurdjevic, Geometric Control Theory, Cambridge university press, 1997.
- W. Klingenberg, A Course in Differential Geometry, Springer Science & Business Media, 51, 2013.
- M. Levi, Geometric phases in the motion of rigid bodies, Arch. Rational Mech. Anal. 123 (1993), no. 3, 305-328. https://doi.org/10.1007/BF00375583
- Z. Li and J. Canny, Motion of two rigid bodies with rolling constraint, IEEE Trans. Automat. Control 6 (1990), no. 1, 62-72. https://doi.org/10.1109/70.88118
- A. Marigo and A. Bicchi, Rolling bodies with regular surface: Controllability theory and applications, IEEE Trans. Automat. Control 45 (2000), no. 9, 1586-1599. https://doi.org/10.1109/9.880610
- A. Marigo, M. Ceccarelli, S. Piccinocchi, and A. Bicchi, Planning motions of polyhedral parts by rolling, Algorithmica 26 (2000), no. 3-4, 560-576. https://doi.org/10.1007/s004539910024
- S. R. Moghadasi, Rolling of a body on a plane or a sphere: A geometric point of view, Bull. Austral. Math. Soc. 70 (2004), no. 2, 245-256. https://doi.org/10.1017/S0004972700034468
- J. Monforte, Geometric, control, and numerical aspects of nonholonomic systems, 1793, Springer Verlag, 2002.
- D. J. Montana, The kinematics of contact and grasp, Int. J. Rob. Res. 7 (1988), no. 3, 17-32. https://doi.org/10.1177/027836498800700302
-
J. A. Zimmerman, Optimal control of the sphere
$S^n$ rolling on$E^n$ , Math. Control Signals Systems 17 (2005), no. 1, 14-37. https://doi.org/10.1007/s00498-004-0143-2