Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Benaroya, H. and Rehak, M. (1990), "Finite element analysis based on stochastic Hamilton variation principle", Comput. Struct., 37(6), 893-902. https://doi.org/10.1016/0045-7949(90)90002-J
- Cai, K.Y., Wen, C.Y. and Zhang, M.L. (1990), "Fuzzy variables as a basis for a theory of fuzzy reliability in the probability context", Fuzzy Subsets Syst,, 37(1), 161-172. https://doi.org/10.1016/0165-0114(90)90039-9
- Chen, J.J. and Che, J.W. (2000), "Optimum design based on probability for dynamic characteristics of engineering structures", Chinese J. Appl. Mech., 17(1), 29-35.
- Chen, J.J., Che, J.W. and Sun, H.A. (2002), "Probabilistic dynamic analysis of truss structures", Struct. Eng. Mech., 13(2), 231-239. https://doi.org/10.12989/sem.2002.13.2.231
- Chen, J.J., Che, J.W., Sun, H.A. et al. (2002), "Probabilistic dynamic analysis of truss structures", Struct. Eng. Mech., 13(2), 231-239. https://doi.org/10.12989/sem.2002.13.2.231
- Chen, S.H. and Yang, X.W. (2000), "Interval finite element method for beam structures", Finite Elem. Anal. Des., 34(1), 75-88. https://doi.org/10.1016/S0168-874X(99)00029-3
- Elishakoff, I. (1995), "Essay on uncertainties in elastic and vicoelastic structures: from A. M. Freudenthal's criticisms to modern convex modeling", Comput. Struct., 56(6), 871-895. https://doi.org/10.1016/0045-7949(94)00499-S
- Elishakoff, I. (1998), "Three versions versions of the finite element method based on concept of either stochasticty fuzziness or anti-optimization", Appl. Mech. Rev., 51(3), 209-218. https://doi.org/10.1115/1.3098998
- Elishakoff, I. (2000), "Possible limitations of probabilistic methods in engineering", Appl. Mech. Rev., 53(2), 19-36. https://doi.org/10.1115/1.3097337
- Feng, L.F., Guo, S.X. and Lv, Z.Z. (2002), "Fuzzy arithmetric and solving of the static governing equations of fuzzy finite element method", Appl. Math. Mech., 23(9), 936-942.
- Gao, W., Chen, J.J. and Hu, T.B. (2004), "Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation", Struct. Eng. Mech., 42(9), 1818-1822.
- Geng, H.C., Zheng, S.Y. and Chen, J.W. (2010), "Influence analysis of large vessel hull deformation on shafting alignment", Ship Eng., 5, 7-9.
- Jie, L. and Jianbing, C. (2005), "Dynamic response and reliability analysis of structures with uncertain parameters", Int. J. Numer. Method. Eng., 62(2), 289-315. https://doi.org/10.1002/nme.1204
- Lei, Z. and Qiu, C. (2000), "Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation", Comput. Struct., 77(6), 651-657. https://doi.org/10.1016/S0045-7949(00)00019-5
- Murawski, L. (2005), "Shaft line alignment analysis taking ship construction flexibility and deformations into consideration", Mar. Stuct., 18, 62-84.
- Su, J.B. and Shao, G.J. (2005), "Current research and prospects on interval analysis in engineering structure uncertainty analysis", Adv. Mech., 35(3), 338-344.
- Wang, X.D., Zhong, T. and Wu, Y.Z. (2005), "Influences of hull deformation on shafting alignment", Shanghai Shipbuild., 2, 61-63.
- Zhuk, S.Y. (1991), "Local-optimal control of discrete dynamic system of a random structure", Avtomatika, 1, 26-31.