DOI QR코드

DOI QR Code

Performance Analysis of a Parallel Mesh Smoothing Algorithm using Graph Coloring and OpenMP

그래프 컬러링과 OpenMP를 이용한 병렬 메쉬 스무딩 알고리즘의 성능 분석

  • 신명규 (인천대학교 컴퓨터 공학부) ;
  • 김지범 (인천대학교 컴퓨터 공학부)
  • Received : 2016.02.02
  • Accepted : 2016.05.26
  • Published : 2016.06.25

Abstract

We propose a parallel mesh smoothing algorithm using graph coloring and OpenMP library for shared memory many core computer architectures. The proposed algorithm partitions a mesh into independent sets and performs a parallel mesh smoothing using OpenMP library. We study the effect of using various graph coloring and color reordering algorithms on the efficiency of performing the proposed parallel mesh smoothing algorithm. We also investigate the influence of using various OpenMP loop scheduling methods on the parallel mesh smoothing efficiency.

본 논문에서는 그래프 컬러링과 OpenMP를 사용한 병렬 메쉬 스무딩 알고리즘을 제안하고 공유메모리 기반의 슈퍼컴퓨터를 이용하여 제안하는 병렬 메쉬 스무딩 알고리즘의 성능 분석을 수행하였다. 제안하는 병렬 메쉬 스무딩 알고리즘은 그래프 컬러링 방법을 통해 전체 메쉬를 여러 개의 독립적인 집합 (색깔)으로 나눈 후 각각의 독립적인 집합에 대하여 OpenMP 라이브러리를 사용하여 순차적으로 병렬 메쉬 스무딩을 수행하는 방법이다. 실험을 통하여 여러 가지 그래프 컬러링 방법과 색깔 순서 재배열 방법이 병렬 메쉬 스무딩의 효율성에 미치는 영향에 대해서 알아보았다. 또한, OpenMP의 루프 스케줄링 방법이 병렬 메쉬 스무딩의 효율성에 끼치는 영향에 대해서 알아보았다.

Keywords

References

  1. J.R. Shewchuk., "What is a good linear element? Interpolation, conditioning, and quality measures," in Proc. of the 11th International Meshing Roundtable, Sandia National Laboratories, pp. 115-126. 2002.
  2. S.P. Sastry and S.M. Shontz, "A parallel log-barrier method for mesh quality improvement and untangling," Engineering with Computers, Vol. 30, no. 4, pp. 503-515, 2014. https://doi.org/10.1007/s00366-014-0362-1
  3. G. Gorman, J. Southern, P. Farrell, M. Piggott ,G. Rokos, P. ,Kelly, "Hybrid OpenMP/MPI anisotropic mesh smoothing. in Proc. of the international conference on computational science," procedia computer science, vol 9. pp 1513-1522, 2012. https://doi.org/10.1016/j.procs.2012.04.166
  4. X. Jiao and P.J. Alexader, "Parallel feature-preserving mesh smoothing, in Proc. of International Conference on Computational Science," pp. 1180-1189, 2005.
  5. L. Freitag, J.M. Plassmann P, "A parallel algorithm for mesh smoothing," SIAM J. Sci Comput. Vol. 20, no. 6, pp. 2023-2040, 1999. https://doi.org/10.1137/S1064827597323208
  6. D. Benitez, E. Rodriguez, J.M. Escobar, R. Montenegro, "Performance evaluation of a parallel algorithm for simultaneous untangling and smoothing of tetrahedral meshes," in Proc. of the 22nd international meshing roundtable. Springer International Publishing, pp. 579-598, 2013.
  7. J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L. Martin, "A comparison of parallel graph coloring algorithms," Technical report, SCCS-666, Northeast Parallel Architectures Center at Syracuse University, 1995.
  8. Chundoong Supercomputer, Center for Manycore Programming, Seoul National University, 2016.
  9. OpneMP Architecture Review Board, OpenMP API, http://www.openmp.org/.
  10. S.M. Shontz and P.M. Knupp, "The effect of vertex reordering on 2D local mesh optimization efficiency," in Proc. of the 17th International Meshing Roundtable, Sandia National Laboratories, pp. 107-124, 2008.
  11. M.T. Jones and P.E. Plassmann, "A parallel graph coloring herustic," SIAM Journal of Scientific Computing, Vol. 14, no. 654, 1993.
  12. J. Kim, "The Effect of Mesh Reordering on Laplacian Smoothing for Nonuniform Memory Access Architecture-based High Performance Computing Systems", Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 3, March 2014.
  13. R.V. Garimella, "MSTK -A flexible infrastructure library for developing mesh based applications," in Proc. of the 13rd International Meshing Roundtable, Sandia National Laboratories, pp. 203-212. 2004.
  14. J. Kim, T. Panitanarak, S.M. Shontz, "A multiobjective mesh optimization framework for mesh quality improvement and mesh untangling," International Journal for Numerical Methods in Engineering, Vol. 94, pp. 20-42, 2013. https://doi.org/10.1002/nme.4431