
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, Apr. 2016 1519
Copyright ⓒ2016 KSII

Managing Flow Transfers in Enterprise
Datacenter Networks with Flow Chasing

Cheng Ren1,2 and Sheng Wang1

1 Key Lab of Optical Fiber Sensing and Communication, Education Ministry of China
University of Electronic Science and Technology of China, Chengdu, P. R. China

[e-mail: wsh_keylab@uestc.edu.cn]
2 School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, P.R. China

[e-mail: rencheng@swpu.edu.cn]
*Corresponding author: Sheng Wang

Received August 18, 2015; revised November 2, 2015; revised December 3, 2015;

accepted January 10, 2016; published April 30, 2016

Abstract

In this paper, we study how to optimize the data shuffle phase by leveraging the flow
relationship in datacenter networks (DCNs). In most of the clustering computer frameworks,
the completion of a transfer (a group of flows that can enable a computation stage to start or
complete) is determined by the flow completing last, so that limiting the rate of other flows
(not the last one) appropriately can save bandwidth without impacting the performance of any
transfer. Furthermore, for the flows enter network late, more bandwidth can be assigned to
them to accelerate the completion of the entire transfer. Based on these characteristics, we
propose the flow chasing algorithm (FCA) to optimize the completion of the entire transfer.
We implement FCA on a real testbed. By evaluation, we find that FCA can not only reduce the
completion time of data transfer by 6.24% on average, but also accelerate the completion of
data shuffle phase and entire job.

Keywords: Datacenter networks, transfer completion time (TCT), flow chasing

This work is partially supported by China’s 973 Program (2013CB329103), NSFC Fund (61271165, 61301153),
Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), the 111 Project
(B14039), Shanghai Oriental Scholar Program and Key Project of Sichuan Education Department(13ZA0185).

http://dx.doi.org/10.3837/tiis.2016.04.003 ISSN : 1976-7277

1520 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

1. Introduction

Recent years, increasingly suppliers of processing virtualization and storage virtualization
software have begun to flog “Big Data” in their presentations. These data sets are so large that
it becomes difficult to process using on-hand database management tools or traditional data
processing applications. Accordingly, more and more enterprises deploy clustering
computation framework (e.g. MapReduce [1], Dryad [2], CIEL [3], and Spark [4]) in
datacenter networks (DCNs) to deal with such a massive amounts of data.

Due to the high cost of datacenter operation, enterprise datacenter operators aim to
maximize the network utilization and complete more jobs in a given time. To achieve this goal,
several solutions have been proposed to reduce the job completion time (JCT) [5], [6], [7].
Most of these works focus on optimizing the computation and storage resource utilization, but
ignoring the network resource, though the data transmission is still not a negligible part during
a job execution. Some real traces show that transferring data between successive stages
accounts for 33% of the running times of jobs with the reduce phase [8].

In clustering computation frameworks like MapRedcue [1] and BSP [9] (see detail in
Section 3.1), a stage cannot complete (or sometimes even start) before all the date from the
previous stage are received. Accordingly, we should minimize the completion time of the
entire transfer, which is defined as a group of flows that can enable a computation stage to
start/finish [8]. In the network's point of view, the minimal average transfer completion time
(TCT) is the objective to pursue. To achieve this objective, we can limit the rate of a flow if its
completion does not result in the completion of its transfer. The remaining network resources
can be used to accelerate other flows without increasing the completion time of this transfer
though the flow completion time (FCT) is prolonged. Furthermore, the bottleneck flow of a
transfer, i.e. the flow completing last in a transfer, should have the priority to get more
bandwidth if it does not impact the performance of other transfers. This is another way to
reduce the average TCT in the network.

Though the flow relationship is referred by many works [8], [10], [11], [12], to the best of
our knowledge, Orchestra [8] is the only existing work concretely focusing on optimizing the
transfer completion time. It designs scheduling schemes to control the rate of each flow to
minimize the TCT. However, it assumes that all the flows belonging to a transfer are sent out
simultaneously, which is an impractical assumption in real-world (see Section 3.3 for details).
Therefore, it is difficult to work in practice. Furthermore, it pursues the fair sharing among
different transfers. In an enterprise datacenter, the operator should focuse on maximizing the
job throughput, i.e. the number of jobs completed in a given time period, to reduce the
operation cost. To this end, we should forget the fairness among jobs/transfers (see Section 3
for details). In this case, the algorithms proposed in [8] does not work any more. In this paper,
we are to design a practical flow scheduling mechanism to minimize the average transfer
completion time, and further reduce the job completion time in the enterprise datacenter
networks. As far as we know, we are among the first to optimize the average TCT in enterprise
datacenter networks.

The main contributions of this work are

● We study the flow characteristics in DCNs through real traces and analyze the properties
that an algorithm should have in order to pursue the minimal average TCT in the network.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1521

● We propose the flow chasing algorithm (FCA) which is practical in real-word DCNs to
pursue the minimal average TCT.

● We implement FCA on a 36-node testbed. The evaluation results show that FCA reduces the
average TCT in the network by about 6.24%.

This paper is organized as follows. In Section 2, we first briefly review previous works on
traffic optimization in DCNs. After that, we present some statistic results which guide our
work and analyze the algorithm requirements to pursue a good performance in Section 3,
which is followed by the flow chasing algorithm in Section 4. The implementation and
evaluation results are presented in Section 5. Finally, we conclude this paper in Section 6.

2. Related Work
Our work is to optimize the data transfer in the network to minimize the average TCT. To

achieve this goal, there are largely three ways. The first one is controlling the flow routing to
pursue load balance and fully utilize the network resource. The representatives adopting this
way are Hedera [13], SWAN [14] and MicroTE [15]. Hedera proposed an algorithm to
estimate the traffic matrix and use the Simulated Annealing algorithm to find the near optimal
routing solution. SWAN and MicroTE leveraged the short term traffic forecasting to optimize
the traffic routing.

The second way to optimize the flow transmission in the network is flow scheduling, which
controls the flow sending sequence and minimize the average flow completion time (FCT).
The representatives of this method are pFabric [16] and PDQ [10]. The main idea of both
works is sending out the flow with the minimal remaining size first, which can get the minial
average FCT theoretically. Unfortunately, both pFabric and PDQ require some switch
modifications and hence they are not easy to deploy in the network. More importantly, neither
of them consider the relationship among different flows. Only optimizing the average FCT
may incur an even larger average TCT in some cases.

The last way to optimize the transfers in DCNs is controlling the available bandwidth of
each flow. This is the easiest way to take the flow relationships into account. Orchestra [8] is
the representative of this solution. It guarantees that at least one link is fully utilized among all
the used links of a transfer and limits the rates of flows that will finish earlier than the last flow
in the transfer. Orchestra is the most relative work to our study, however, it assumes that all the
flows belonging to a transfer are arriving/sent out at the same time. This assumption is
impractical in real networks. On the other hand, Orchestra pursues the fairness among
different transfers, and hence it cannot minimize the average transfer completion time in the
network, which is a more reasonable objective in enterprise networks. Due to the different
objectives to pursue, Orchestra cannot be transplanted into enterprise datacenter networks
where the minimal TCT is objective, with a simple modification. FCA proposed in this paper
will remove the impactical assumption and utilize the minimal remaining time first principle
to reduce the average TCT in the enterpirse datacenter networks.

3. Problem Analysis
In this section, we deeply analyze the problem to optimize the data transfer in DCNs. At first,

we briefly discuss two popular cluster computing frameworks, MapReduce and Bulk
Synchronous Parallel (BSP) in Section 3.1. Based on these computing framework discussions,

1522 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

we formulate the problem to solve in this paper and discuss the challenges to solve this
problem in Section 3.2. Then some statistic results that motivate our study are shown in
Section 3.3. After that we analyze the main properties a practical algorithm should have in
order to minimize average TCT in Section 3.4.

3.1 Common Cluster Computing Framework
In this section, we briefly review the most common cluster computing frameworks

MapReduce and Bulk Synchronous Parallel (BSP). Based on the characteristics of these
cluster computing frameworks, we will propose the problem we should optimize in cluster
computing. These two computing frameworks are shown in Fig. 1.

……

……

……

Mappers

Reducers

Barrier

……

Write

 Barrier

Superstep(i)

Superstep(i+1)

……

……

 (a) MapReduce (b) Bulk Synchronous Parallel (BSP)

Fig. 1. Common cluster computing frameworks

Fig. 1(a) shows MapReduce framework. In this framework, each mapper reads its input

from the Distributed File System (DFS), and performs user-defined computations. When a
mapper finishes the computation, it asks the central controller to inform the corresponding
reducers to pull intermediate data from itself. After collecting all the required data, a reducer
merges the data from mappers and writes its output to the DFS. In this framework, there are
two explicit barriers. One is at each reducer: it starts merging data when all the required data
are collected. And the other one is at the end of the job: only when all the reducers finish their
data merging and write the outputs to the DFS, the job is completed. When focusing on the
data transfer, we should pay attention to the barrier at each reducer.

Bulk Synchronous Parallel (BSP) shown in Fig. 1(b) is another well-known framework in
cluster computing. In this framework, a job is executed in a serial of supersteps. Each
superstep contains three ordered stages: concurrent computation, communication between
VMs and barrier synchronization. In concurrent computation stage, the input of each
processor is stored in the local memory of this processor and the computations are independent
with other processors. Then the processors exchange data between themselves in the
communication stage. When a process arrives at the barrier synchronization stage, it waits
until all other processors have finished their communication actions. The start of next
superstep is determined by the finish of the last flow in the communication stage.

3.2 Problem Formulation and Discussion
Based on above discussion, we know that the flows in the computation cluster are

dependent on each other and the completion of a single flow does not make too much sense.
Accordingly, we should try to speed up the completion of the entire group of flows that

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1523

determines the start/finish of its next computation stage, i.e. to speed up the completion of a
transfer. In the network wide, we should minimize the average TCT. Formally, the problem
can be formulated as following optimization problem:

minimize ()

∈

−∑ T T
T

F S
Γ

 (1)

Subject to: (2)

,≥ ∀ ∈T fF t T f T (3)

() ,≥ ∀∫
f

f

t

f fs
b t dt v f t (4)

:
() () E

∈

= ∀ ∈∑
f

l f
f l P

u t b t l ,t (5)

() E≤ ∀ ∈l lu t c l ,t (6)

 In above formulation, Γ is the set of all the transfers in the enterprise datacenter networks, FT
and ST are the finish time and start time of transfer T, respectively. Hereby, (FT - ST) is the
completion time of transfer T. The objective (1) is to minimize the average completion time
(i.e. minimize the sum of completion time of all the transfers) of all the transfers in the network.
In (2) and (3), sf and tf are the start and finish time of flow f, respectively. These two constraints
say that a transfer starts before all the flows in it begin, while finishes after all the flows in it
complete. In (4), bf(t) is the bandwidth assigned to flow f at time t and vf is the volume of flow
f. This constraint is used to ensue all the flow data is served during sf to tf. In (5) and (6), ul(t) is
the total traffic rate on link l, cl is the capacity of link l, and Pf is the set of link on the path that
traversed by flow f. (5) calculates the traffic rate on link l, while (6) indicates that the traffic
rate on each link cannot exceed the link capacity.
 This problem is difficult to solve, since (I) the arriving time and volume of each flow are
random variables in real system, and the programming constraint is for infinite time instants.
Therefore, we cannot really get above programming problem even for analysis purpose; (II)
the flows in each transfer may not arrive simultaneously. Therefore, we cannot optimize the
completion time for each single transfer; (III) even the completion time of each transfer is
obtained, how to scheduling these transfer in an online system is still an NP-hard problem [17];
(IV) we do not know the number of transfers in the network. Due to these challenges, we only
try to design an online heuristic to optimize the average TCT in the network.

3.3 Statistic Results
In this section, we present some statistic results based on the real trace by running a terasort

job (with size 200G) in our Hadoop system. The testbed to generate this trace uses the same
configuration detailed in Section 5.1.

3.3.1 Flow Arriving Interval

1524 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

(a) Flow arriving interval of a reducer (b) Flow arriving interval of a mapper

Fig. 2. Statistic results of flow arriving interval

Ideally, all the flows belonging to a transfer are arriving simultaneously. In this case, we can
easily calculate the bandwidth assigned to each flow to optimize the TCT. Unfortunately, this
is not the case. Fig. 2 shows the CDF of flow arriving intervals in a transfer. If we treat all the
flows to a reducer as a transfer (see Fig. 2(a)), about half of the flow arriving intervals are
larger than 200 ms, which is a large time interval and cannot be ignored in a high throughput
low latency network (the RTT is usually less than 400 as in [18]). If we treat all the flows from
a mapper as a transfer (see Fig. 2(b)), 20% of the flow arriving intervals are larger than 2 s.
Even worse, some flow arriving intervals are more than 30 s. To hold flows in the network for
such a long time is impractical, though the last flow blocks the completion of the whole
transfer.

3.3.2 Flow Completion Time

 Fig. 3. CDF of flow completion time

Fig. 3 shows the CDF of the flow completion time. From this figure we see that about 60%

of the flows finish in 2 s. In other words, most of the flows in DCNs complete very quickly. If
we hold a flow to wait for the coming of next flow in the same transfer, in 30% of the cases,
about 10% of the flow completion time (say half of the flows wait for at least 200 ms) is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1525

wasted on waiting, which is non-ignorable for a flow, let alone the case that every flow waits
for all the flows in the same transfer.

3.3.3 Traffic Volume for a Transfer

Fig. 4. CDF of total flow volume of a reducer

Fig. 4 shows the CDF of the total traffic volume that a reducer receives before it starts its

computation. It implies that most of the reducers receive more than 900 MB before they start
working. When all the mappers are evenly distributed in the datacenter, it costs at least 24 s to
transfer the data for a reducer even if all the bandwidth is occupied by the flows to this reducer.
If we run a larger job, the condition will be even worse. Accordingly, if we collect all the flows
belonging to a transfer and send them out simultaneously, it would bring network congestions
and incur TCP retransmissions.

3.4 Optimality Analysis
Based on the discussion above, we identify the necessary characteristics of an algorithm to

optimize the data transfer phase:
● Necessity to be an online algorithm. In DCNs, most of the flows are bursting and the

traffic rate on a link is only relatively stable in 1 s scale [14]. As the decomposition of the
traffic rate on each link, the traffic matrix is more dynamic. Therefore, it is difficult to forecast
the traffic matrix in DCNs. On the other hand, as shown in Fig. 2, even the arriving intervals of
flows from the same mapper or to the same reducer are distributed in a large range.
Accordingly, we cannot assume that we have all the flow information of every transfer before
its flows enter the network, in which case we can optimize the data transfer statically.

● Work conserving property. There is idle bandwidth only when there is no traffic to send.
For any flow, without degrading the performance of other flows, it should send out bytes as
fast as possible. This is a way to fully utilize the network resource and reserve more resource
for the further flows.

●Focus on the bottleneck flow in a transfer. As discussed in Section 3.1, in those cluster
computing frameworks with explicit barriers, the start of some computing stage is determined
by the completion of the bottleneck flow in the transfer. Without any information in the
transfer level, we can only treat the coming flow as the last flow of a transfer. Under this

1526 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

assumption, more bandwidth should be assigned to the bottleneck flow to accelerate the
transfer completion.

●Minimal remaining transfer first principle. As studied in [8, 10, 16, 19], the minimal
remaining flow first achieves the minimal average flow completion time. This conclusion is
easily extended to the transfer level, i.e. the minimal remaining transfer first principle would
achieve the minimal average TCT. In other words, if all the flows belonging to a transfer arrive
at the same time, the transfer with the minimal remaining traffic volume should have the
higher priority to preempt the network resource.

4. Algorithm Design
In this section, we present Flow Chasing Algorithm (FCA) to optimize the data transfer in

detail. In Section 4.1, we first identify the key idea of FCA and show the algorithm framework.
After that, the rate control algorithms for intra- and inter- transfer flows are introduced in
Section 4.2 and Section 4.3, respectively. At last, we present some discussions on how to
implement our framework in the real system in Section 4.4.

4.1 Flow Chasing Framework
The main idea of FCA is to limit the rate of flows that are not bottleneck flows, while assign

more bandwidth to the bottleneck flows. Fig. 5 shows why this method works. In this example,
there are two transfers (say Ta and Tb) and each of them has two flows. All the flows have 30
Mbit to transmit and the route of each flow is as shown in the figure. Suppose all the flows
enter in a very short time slot and all the link capacity is 30 Mbps except (s1, d1) whose
capacity is 5 Mbps, (s2, d2) is 10 Mbps and (s3, d3) is 15 Mbps. On the common link (s3, d3), if
these two flows share the bandwidth fairly, the completion time of the two transfers is 6 s (Ta)
and 4 s (Tb), respectively. However, if the traffic rate of fa2 is limited to 5 Mbps, and the
remaining bandwidth is assigned to flow fb2, the completion time of two transfers are 6 s and 3
s, respectively, which is better than that uner the fair sharing policy.

Fig. 5. Why rate control works

The performance improvement originates from the fact that the bottleneck of transfer Ta is

fa1, complete fa2 earlier cannot improve the performance of the entire transfer. Accordingly, we
can limit its rate and leave more bandwidth to fb2, the bottleneck of transfer Tb, to speed up the
transfer. Therefore, limit the rate of flows that are not bottleneck flows and assign more
bandwidth to the bottleneck flows can reduce the average TCT in the network.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1527

In addition, consider another case that transfer Ta arrives at time 0 s, while transfer Tb arrives
at time 2 s, and the capacity of link (s2, d2) is 15 Mbps. When transfer Ta arrives, fa1 is the
bottleneck of transfer Ta. We can myopically limit the traffic rate of flow fa2 to be 5 Mpbs. If
so, when the transfer Tb arrives, there are only 10 Mbps capacity leaving to flow fb2 on link (s3,
d3) and flow fb2 becomes the bottleneck of transfer Tb. In this case, the completion time of two
transfers are 6 s and 3 s, respectively. If we let fa1 to monopolize all the capacity on link (s3, d3)
from time 0 s to 2 s, it can finish at time 2 s. Though this scheme cannot reduce the completion
time of transfer Ta, fb2 monopolizes link (s3, d3) when tranfer Tb arrives, which speed up the
completion of transfer Tb. By this method, the completion time of two transfers are 6 s and 2 s,
respectively. The performance improvement is due to the fact that the second scheme pursues
work conserving when assigning the network bandwidth, which can bring benefit to the
flows/transfers that will come later.

Based on these discussions, the key points of FCA are:
● When a flow enters, try to assign enough bandwidth to it with the purpose to catch up with

the completion of the bottleneck flow in its transfer. (This is why we call the algorithm as flow
chasing.)

● If the new coming flow cannot catch up with the bottleneck flow in its transfer, limit the
rates of other flows that are not transfer bottleneck flows in the transfer to save bandwidth.

● Flows should compete for the residual bandwidth. It is to pursue the work conserving
property and further optimize the average TCT in the network by bringing benefit to the
flows/transfer coming later.

Fig. 6. Framework of FCA

The first two bullets are for the intra-transfer rate control while the last bullet is for the

inter-transfer scheduling. Therefore, the framework of FCA can be shown as in Fig. 6. When a
flow enters, FCA first does the intra-transfer control to determine the worst completion time of
its transfer and to shrink traffic rates to save bandwidth. After that, inter-transfer control is
triggered to assign the residual bandwidth to different transfers/flows and further optimize
average TCT in the network. When a flow completes, only the inter-transfer control should be
triggered to fully utilize the bandwidth released by the completed flow. In the next two
subsections, we introduce intra- and inter- transfer rate control of FCA in detail.

1528 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

4.2 Intra-transfer Flow Rate Control

The algorithm to control the rates of flows in a transfer when a flow enters is shown in

Algorithm 1. The key sprite of this algorithm is: (I) first minimize the completion time of the
transfer of the coming flow with the assumption that the coming flow is the last flow of its
transfer, and (II) then minimize the bandwidth consumption without enlarging the TCT. Line 1
to Line 6 are used to shrink the flow bandwidth to leave more bandwidth for the coming flow.
After the operations in Line 1-6, all the flows in a transfer should get the bandwidth that makes
them complete simultaneously, i.e. the bandwidth of all the flows that will complete before the
bottleneck flow is shrank. The “if” expression from line 9 to line 15 is the core of Algorithm 1.
If the coming flow is the bottleneck (as the “if” expression shows, it cannot complete before its
transfer), it gets as much residual bandwidth as possible without impacting the performance of
other flows. In this case, we further shrink the bandwidth of other flows in the same transfer to
match the completion time of the coming flow (Line 12). Otherwise, the coming flow only
gets the appropriate bandwidth to chase the bottleneck flow of its transfer (Line 13). It is worth
noting that after intra-transfer rate control, the transfer containing the coming flow achieves
the minimal TCT under current network utilization condition, while other transfers hold their
performance.

4.3 Inter-transfer Flow Rate Control
Intra-transfer flow rate control determines the lower bound of the completion time of each

transfer, however, such a performance can be further improved since there is residual
bandwidth, especially when some flow completes and release its network resources.
Furthermore, pursuing the work conserving property could speed up the completion of some
flows and benefit the later flows.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1529

There are two steps to pursue the work conserving. The first step is to check whether any
transfer's completion can be sped up by utilizing the residual bandwidth, while the second step
is to speed up flows to fully utilize the network resource. Due to the minimal remaining
transfer first principle, the transfer with the smaller remaining size has the higher priority to
preempt the residual bandwidth in both steps.

In the first step, we pick out the unchecked transfer with the minimal remaining volume, say
transfer T, to calculate its minimal completion time by preempting residual bandwidth. To this
end, we solve the following programming:

Objective: minimize t (7)

Subject to:
:

()
f

f
l f

f l P

r
u b l

t∈ ∈

= − ∀ ∈∑
T

E (8)

l lu c l≤ ∀ ∈E (9)

where Pf is the set of links on f’s path, rf is the remaining volume of f, bf is the bandwidth of f
determined by the intra-transfer rate control and cl is the residual bandwidth on link l. Though
this is not a standard convex optimization problem, it can be solved by water filling algorithm
[20] easily. Then the rate of each flow f belonging to transfer T can be increased by /f fr t b− .

In the second step, we allocate the residual bandwidth to the flows in the network though it
cannot reduce the TCT further, however, it guarantees that the network resource is fully
utilized and benefits the flows coming later. Accordingly, we check each flow, say flow f, in
the network if there is any residual bandwidth for it to complete earlier by calculating

min
f

ll P
BF b

∈
= (10)

If BF>0, we increase f's rate by BF. All the flows are checked in the order of the minimal
remaining transfer first, and the minimal remaining volume flow first in each transfer.

Whenever a flow completes, more residual bandwidth is released and we assign it to other
online flows in the network for the work conserving purpose. To this end, only the
inter-transfer rate control needs to be triggered. To reduce the computation complexity, we
only consider the transfers that have common links with the completed flow (an alternative
improvement is recalling the inter-transfer rate control in batch).

4.4 Discussions
 To implement FCA in a real system, there are remaining some issues. The first one is on the
flow volume. Since in real system, some of the flows are sent out while part of the data are still
being generated. In other words, we cannot get the flow volume information exactly. To solve
this problem, we assume the flow volume is only as large as the amount that is already
generated. When there are new data generated, we treat the new generated data as a new
arriving flow and trigger FCA to update the bandwidth allocation.

Another issue is that there are too many mice flows (usually less than 50 KB) in the network.
If we trigger FCA whenever such flows arrive, it may be a too large system overhead.
Consider that most of these flows are delay sensitive, we can only set a higher priority to these
mice flows and let them be served first. Only when the volume of arriving flow is larger than a
predefined threshold, we use FCA to optimize the average TCT in the network.

1530 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

5. Implementation and Evaluation
In this section, we evaluate FCA by implementing it on our testbed. In Section 5.1, we first

show the configuration of our testbed. Then, we present the technical details of FCA's
implementation in Section 5.2. In the end, we evaluate FCA in Section 5.3.

5.1 Testbed

Fig. 7. Simulation and implementation topology

Our testbed is formed by 37 servers and 7 switches as Fig. 7 shows. In the data plane, 6 of

the switches form a leaf-spine topology (2 spine switches and 4 leaf/ToR switches), while
there are 9 servers connected to each leaf/ToR switch. The remaining server and switch are
used to form the control plane to run FCA. All the 37 servers are HP PowerEdge R320 with a
quad core Intel Xeon E5-1410 2.80GHz CPU and 8GB memory and are running Debian
GNU/Linux 6.0. To collaborate with our low-throughput HDDs, the bandwidth capacity of
each link is limited to 300Mbps. All the switches are Pronto 3295 switches, which run PicOS
2.0.4 in OpenFlow mode. All the evaluations are based on the results of real job executions in
a 0.20.2 Hadoop system.

5.2 Implementation

Fig. 8. Software stack of FCT’s bandwidth enforcement

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1531

For load banlancing purpose, we randomly select a route for each flow in the testbed and use
Openflow based explict routing to control the traffic. With this method, the routing result will
be similar to the ECMP. The architecture of FCT's bandwidth enforcement is shown in Fig. 8.
The enforcement daemon at the user space communicates with the kernel module via ioctl to
manage the flow table. The kernel module, locating between TCP/IP stack and TC, intercepts
all outgoing packets and modifies nfmark field of socket buffer based on the rules in flow table.
The modified packets are then delivered to TC for rate limiting. We leverage two-level
Hierarchical Token Bucket (HTB) in TC: the root node classifies packets to their
corresponding leaf nodes based on nfmark field and the leaf nodes enforce per-flow rates.

Whenever a flow enters, its source host sends its flow information to the central controller.
During the three-way handshaking of each flow, central controller can execute FCA and
update the rate of all the flows in the network. Unfortunately, due to the enforcement delay and
flow rate unstablity, we cannot exactly maintain the remaining volume of each flow. To
simplify the implementation, we use the total volume of a transfer/flow to determine which
transfer/flow has the higher priority to preempt the bandwidth instead of their estimated
remaining volumes, when executing the inter-transfer rate control. Similarly, when a flow
completes, its source host should report its finish to the central controller to trigger the
inter-transfer rate control procedure.

Fig. 9. CDF of TCT

5.3 Performance Evaluation
In this subsection, we evaluate the flow chasing algorithm (FCA) in three ways by running a

200G terasort job on our testbed: to speed up the reducer completion, to speed up the shuffle
phase and to speed up the job completion.

5.3.1 Reducer Completion
In our evaluation, a transfer is defined as all the flows to a reducer since a reducer cannot

enable its merging operation before all the data it requires are collected. Accordingly, the
reducer completion time directly reflects the performance of FCA. Since we cannot guarantee
a reducer executing the same computation have the same ID even if we run the same job twice,
we only count the CDF of the transfer completion time before and after FCA is enabled in the
network. Fig. 9 shows the performance of FCA. From the figure we see that the CDF curve of

1532 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

TCT in the FCA-enabled network is on the left of that without FCA, it implies that FCA
reduces the average TCT in the network. The reason is that FCA can save bandwidth without
degrading the performance of any transfer. Actually, the average TCT in the network with
FCA implemented is 217.52s, while the baseline is 232.00s. About 6.24% performance
improvement is brought by FCA.

5.3.2 Shuffle Completion

Fig. 10. Shuffle Completion Time

Intuitively, optimizing the completion of each transfer further shrinks the shuffle phase of a

job. Fig. 10 shows the shuffle completion time of a job with and without FCA. It implies that
FCA saves about 4.8% (about 38 s) of the shuffle phase.

5.3.3 Job Completion

Fig. 11. Job Completion Time

Fig. 11 shows the benefit FCA brought to the job completion time (JCT). From the figure,

we find that our algorithm can improve the job completion time by 2.00% (about 21 s). It is
very strange that the absolute time saved in a job is even less than that saved in the shuffle

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1533

phase. This is because that the CPU is not powerful enough to deal with the data as soon as
possible though the data transfer is completed.

6. Conclusion
We studied the flow transfer management problem in datacenter networks in this paper. An

efficient flow chasing algorithm (FCA) is proposed to optimize the flow transfer. Since the
completion of the flow transfer is limited to the completion of the bottleneck flow, we shrink
the rates of non-bottleneck flows to save bandwidth and accelerate the transmission of the
latter flow of a transfer to reduce its transfer completion time. We also implement FCA on a
real testbed. By evaluation, we find that FCA can not only reduce the average transfer
completion time (TCT) in the network, but also further reduce the shuffle phase and speed up
the job completion.

References
[1] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters,"

Communications of the ACM, 107-113, 2004. Article (CrossRef Link)
[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, "Dryad: Distributed Data-Parallel

Programs from Sequential Building Blocks," in Proc. of ACM EuroSys, Lisboa, Portugal, pp.
59-72, 2007. Article (CrossRef Link)

[3] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand,
"CIEL: a universal execution engine for distributed data-flow computing," in Proc. of USENIX
conference on Networked systems design and implementation, pp. 113-126, 2011.
Article (CrossRef Link)

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, "Spark: Cluster
Computing with Working Sets," in Proc. of USENEX HotCloud, Boston, MA, USA, 2010.

 Article (CrossRef Link)
 [5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, et al., "Reining in

the outliers in map-reduce clusters using Mantri," in Proc. of the 9th USENIX conference on
Operating systems design and implementation, Vancouver, BC, Canada, 2010.
Article (CrossRef Link)

[6] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg, "Quincy: fair
scheduling for distributed computing clusters," in Proc. of the ACM SIGOPS 22nd symposium
on Operating systems principles, Big Sky, Montana, USA, 2009. Article (CrossRef Link)

[7] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, "Delay
Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling,"
in Proc. of ACM EuroSys, Paris, France, pp. 265-278, 2010. Article (CrossRef Link)

[8] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, "Managing Data Transfers in
Computer Clusters with Orchestra," in Proc. of ACM SIGCOMM, Toronto, Ontario, Canada,
2011. Article (CrossRef Link)

[9] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, et al., "Pregel: a
system for large-scale graph processing," in Proc. of the 2010 ACM SIGMOD International
Conference on Management of data, Indianapolis, Indiana, USA, 2010.
Article (CrossRef Link)

[10] C.-Y. Hong, M. Caesar, and P. B. Godfrey, "Finishing Flows Quickly with Preemptive
Scheduling," in Proc. of ACM SIGCOMM, Helsinki, Finland, 2012. Article (CrossRef Link)

[11] M. Chowdhury and I. Stoica, "Coflow: A Networking Abstraction for Cluster Applications," in
Proc. of ACM Hotnets, Seattle, WA, USA, 2012. Article (CrossRef Link)

[12] ND. Han, Y. Chung, M. Jo, ''Green data centers for cloud-assisted mobile ad hoc networks in
5G," IEEE Network, Vol.29, No.2, pp. 70-76, April 2015. Article (CrossRef Link)

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1272996.1273005
https://www.usenix.org/legacy/event/nsdi11/tech/full_papers/Murray.pdf
http://static.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Ananthanarayanan.pdf
http://dx.doi.org/10.1145/1629575.1629601
http://dx.doi.org/10.1145/1755913.1755940
http://dx.doi.org/10.1145/2043164.2018448
http://dx.doi.org/10.1145/1807167.1807184
http://dx.doi.org/10.1145/2377677.2377710
http://dx.doi.org/10.1145/2390231.2390237
http://dx.doi.org/10.1109/MNET.2015.7064906

1534 Ren et al.: Managing Flow Transfers in Enterprise Datacenter Networks with Flow Chasing

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera: Dynamic
Flow Scheduling for Data Center Networks," in Proc. of USENIX NSDI, Berkeley, CA, USA,
2010. Article (CrossRef Link)

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, et al., "Achieving High
Utilization with Software-Driven WAN," in Proc. of ACM SIGCOMM, Hong Kong, 2013.

 Article (CrossRef Link)
[15] Theophilus Benson, Ashok Anand, Aditya Akella, and M. Zhang, "MicroTE Fine Grained

Trafic Engineering for Data Centers," in Proc. of ACM CoNEXT, 2011.
Article (CrossRef Link)

[16] M. Alizadeh, S. Yang, M. Sharif, N. McKeown, B. Prabhakar, and S. Shenker, "pFabric:
Minimal Near-Optimal Datacenter Transport," in Proc. of ACM SIGCOMM, 2013.

 Article (CrossRef Link)
[17] Mosharaf Chowdhury, Yuan Zhong, and I. Stoica, "Efficient Coflow Scheduling with Varys,"

in Proc. of ACM SIGCOMM, Chicago, IL, USA, 2014. Article (CrossRef Link)
[18] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, "The Nature of Datacenter

Traffic: Measurements & Analysis," in Proc. of ACM IMC, Chicago, Illinois, USA, pp.
202-208, 2009. Article (CrossRef Link)

[19] B. Vamanan, J. Hasan, and T. N. Vijaykumar, "Deadline-Aware Datacenter TCP (D2TCP)," in
Proc. of ACM SIGCOMM, Helsinki, Finland, pp. 115-126, 2012. Article (CrossRef Link)

[20] J. Walrand and S. Parekh, Communication Networks: A Concise Introduction, 2010.
Article (CrossRef Link)

Cheng Ren received her master degree in circuit and system from University of
Electronic Science and Technology of China (UESTC), Chengdu, China in 2006. Now,
she is a Ph.D. candidate in Communication Engineering in UESTC. Her research interests
include software-defined networking and network resource allocation.

Sheng Wang received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from
the University of Electronic Science and Technology of China (UESTC), Chengdu,
China, in 1992, 1995, and 1999, respectively. He is now a Professor and a Research
Group Leader in UESTC. His research interests include network design, optical
switching, and next generation networks.

https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/al-fares.pdf
http://dx.doi.org/10.1145/2486001.2486012
http://dx.doi.org/10.1145/2079296.2079304
http://dl.acm.org/citation.cfm?doid=2486001.2486031
http://dx.doi.org/10.1145/2619239.2626315
http://dx.doi.org/10.1145/1644893.1644918
http://dx.doi.org/10.1145/2377677.2377709
http://dx.doi.org/10.2200/S00254ED1V01Y201002CNT004

