DOI QR코드

DOI QR Code

Mice에서 Calcein 표지를 이용한 골 변화 관찰

Bone Changes in Femoral Bone of Mice Using Calcein Labeling

  • 투고 : 2016.04.28
  • 심사 : 2016.05.12
  • 발행 : 2016.06.30

초록

골은 일생에 걸쳐 지속적인 재형성과장을 거치면서 유지되고 이러한 기전에 대한 연구는 골다공증을 비롯한 골대사 질환의 병태생리와 치료에 있어 큰 진전을 이루고 있다. 특히 생체 내 골형성 및 재생과정을 연구하는데 있어 형광표지자를 이용하는 방법이 널리 알려져 있는데, 그 중 calcein은 칼슘 킬레이터로 골이 새롭게 형성하는 부위에 녹색을 띔으로써 유용한 마커로 사용된다. 그러나 대부분의 골형성 연구에서 실험동물의 경우 표본제작을 할 때 크기가 작고 뼈가 부숴지기 쉬워 rat이나 rabbit을 이용하였으며, mice의 femur를 cross-section해서 관찰한 연구는 거의 없는 실정이다. 그래서 본 연구에서는 어린 mice를 실험동물로 이용하였으며, 생체 내 calcein을 4주간, 8주간 투여한 후 골 형성 변화를 형광현미경으로 관찰한 결과 8주차 쥐에서 4주차보다 진하고 골 형성 간격도 넓게 관찰된 것을 확인 할 수 있었다. Mice는 빠른 시일 내에 결과를 얻을 수 있고 부작용이 적은 장점이 있어서 앞으로 knock-out mice를 이용한 생체 내 실험에 활용하기 적합하다고 생각되며, 골형성 속도 평가 등 다양한 분야에서의 골 형성과 재생연구에 있어 기초 정보를 제공할 것으로 기대한다.

In vivo labeling of bone with fluorochromes is a widely used method for assessment of bone formation and remodeling processes. In particular, calcein is used as a marker for identification of bone growth, which is indicated by a green color. Calcein green is a calcium chelator that adheres to regions of mineralizing bone thereby allowing localization of new bone. Bone formation and remodeling in vivo can be assessed by calcium-binding calcein labeling. In this study, changes in the femoral bone of a normal mouse model at both 4 and 8 weeks were evaluated using calcein labeling. Intense deposition of calcium in the bone was observed after application for 8 weeks. A mouse model is suitable for application in in vivo experiments using genetically modified mice, such as knock-out mice, however data regarding femoral cross sectional bone in young mice are limited. The current study confirmed calcein as a useful marker for identification of bone growth, which was indicated by a green color on photomicrographs. This methodological process may provide basic information for interpreting bone formation and regeneration to pharmacologic or genetic manipulation in mice.

키워드

참고문헌

  1. Solheim T. Pluricolor fluorescent labeling of mineralizing tissue. Scand J Dent Res.1974;82:19-27.
  2. Schicker M, Pautke C, Reitz K, Hemraj I, Neth P, Mutschler W, et al. The use of four-colour immunofluorescence techniques to identify mesenchymal stem cells. J Anat. 2004;204:133-139. https://doi.org/10.1111/j.1469-7580.2004.00252.x
  3. Andre T. Studies on the distribution of tririum-labelled dihydrostreptomycin and tetracycline in the body. Acta Radiol. 1956; 142:1-89.
  4. Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hnders S. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res. 1988;3:133-144.
  5. Turner RT. Cancellous bone turnover in growing rats: time-dependent changes in association between calcein label and osteoblasts. J Bone Miner Res. 1994;9:1419-1424.
  6. Turner RT, Evans GL, Wakley GK. Mechanism of action of estrogen on cancellous bone balance in tibiae of ovariectomized growing rats: inhibition of indices formation and resorption. J Bone Miner Res. 1993;8:359-366.
  7. Erben RG, Embedding of bone samples in methyl methacrylate: An improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem & Cytochem. 1997;45(2): 307-313. https://doi.org/10.1177/002215549704500215
  8. Sontag W. Age-dependent morphometric alterations in the distal femora of male and female rats. Bone. 1992;13:297-310. https://doi.org/10.1016/8756-3282(92)90074-7
  9. Ames MS, Hong SM, Lee HR, Fields HW, Johnston WM, Kim DG. Estrogen deficiency increases variability of tissue mineral density of alveolar bone surrounding teeth. Arch Oral Biol. 2010;55(8): 599-605. https://doi.org/10.1016/j.archoralbio.2010.05.011
  10. Gehrke SA, Nascimento PC. Analysis of bone tissue healing around titanium implant surface treated with Tio Sandblasted after three and six weeks used different histological methods-a study in rabbits. Sci J Med & Clin Trials. 2013;34-40.
  11. Deguchi T, Yamamoto TT, Yabuuchi T, Ando R, Roberts WE, Garetto LP. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am J Orthodon & Dentofacial Orthopedics. 2008; June:133(6):889-897. https://doi.org/10.1016/j.ajodo.2006.12.013
  12. Aido M, Kerschnitzki M, Hoerth R, Burghammer M, Montero CD, Checa S, et al. Relationship between nanoscale mineral properties and calcein labeling in mineralizing bone. Connect Tissue Res, 2014; 55:15-17. https://doi.org/10.3109/03008207.2014.923869
  13. Glatt V, Canalis E, Stadmeyer L, Bouxsein M. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone and Mineral Res. 2007;22(8):1197-1207. https://doi.org/10.1359/jbmr.070507
  14. Roldan JC, Jepsen S, Miller J, Freitag S, Rueger DC, Acil Y, et al. Bone formation in the presence of platelet-rich plasma vs. bone morphogenetic proten-7. Bone. 2004;34:80-90. https://doi.org/10.1016/j.bone.2003.09.011
  15. Frost HM, Villanueva AR, Roth H, Stanisavljevic S. Tetracycline bone labeling. J New Drugs. 1961;1:206-216. https://doi.org/10.1177/009127006100100503
  16. Follak N, Kloting I, Wolf E, Merk H. Histomorphometric evaluation of the influence of the diabetic metabolic state on bone defect healing depending on the defect size in spontaneously diabetic BB/OK rats. Bone. 2004;35:144-152. https://doi.org/10.1016/j.bone.2004.03.011
  17. Rahn BA, Perren SM. Xylenol orange, a fluorochrome useful in polychrome sequential labeling of calcifying tissues. Stain Technol. 1971;46:125-129. https://doi.org/10.3109/10520297109067836

피인용 문헌

  1. Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-93547-4