수문모델링을 통해 본 이세돌과 알파고의 대국

  • Heo, Yong-Gu (Blackland Research and Extension Center, Texas A&M University)
  • Published : 2016.05.31

Abstract

Keywords

References

  1. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. and Dieleman, S., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), pp.484-489. https://doi.org/10.1038/nature16961
  2. Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S., 2003. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39(8), 1201, doi:10.1029/2002WR001642, 8.
  3. Her, Y. and Chaubey, I., 2015. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrological Processes, 29(19), pp.4220-4237. https://doi.org/10.1002/hyp.10487
  4. Her, Y. and Heatwole, C., 2016. Two-dimensional continuous simulation of spatiotemporally varied hydrological processes using the time-area method. Hydrological Processes, pp. 751-770.
  5. Her, Y., Cibin, R. and Chaubey, I., 2015. Application of Parallel Computing Methods for Improving Efficiency of Optimization in Hydrologic and Water Quality Modeling. Applied Engineering in Agriculture, 31(3), pp.455-468.