References
- Abdollahian, M., Ghorbanpour Arani, A., Mosallaie Barzoki, A.A., Kolahchi, R. and Loghman, (2013), "A. Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM", Physica B, 418, 1-15. https://doi.org/10.1016/j.physb.2013.02.037
- Amabili, M., Pellicano, F. and Paidoussis, M.P. (2002), "Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid", Comput. Struct., 80, 899-906. https://doi.org/10.1016/S0045-7949(02)00055-X
- Amabili, M. (2003), "A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach", J. Sound Vib., 264, 1091-1125. https://doi.org/10.1016/S0022-460X(02)01385-8
- Amabili, M., Karagiozis, K. and Paidoussis, M.P. (2009), "Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid", Int. J. Nonlin. Mech., 44, 276- 289. https://doi.org/10.1016/j.ijnonlinmec.2008.11.006
- Fazzolari, F.A. and Carrera, E. (2014), "Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core", J. Sound. Vib., 333,1485-1508. https://doi.org/10.1016/j.jsv.2013.10.030
- Ghorbanpour Arani, A., Karimi, M.S. and Rabani Bidgoli, M. (2016), "Nonlinear vibration and instability of rotating piezoelectric nanocomposite sandwich cylindrical shells containing axially flowing and rotating fluid-particle mixture", Polym. Compos., doi: 10.1002/pc.23949. (in Press)
- Jansen, E.L. (2008), "A perturbation method for nonlinear vibrations of imperfect structures: Application to cylindrical shell vibrations", Int. J. Solid. Struct., 45, 1124-1145. https://doi.org/10.1016/j.ijsolstr.2007.07.007
- Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025
- Karagiozis, K.N., Amabili, M., Paidoussis, M.P. and Misra, A.K. (2005), "Nonlinear vibrations of fluidfilled clamped circular cylindrical shells", J. Fluid. Struct., 21, 579-595. https://doi.org/10.1016/j.jfluidstructs.2005.07.020
- Khadimallaha, M.A., Casimir, J.B., Chafra, M. and Smaoui, H. (2011), "Dynamic stiffness matrix of an axisymmetric shell and response to harmonic distributed loads", Comput. Struct., 89, 467-475. https://doi.org/10.1016/j.compstruc.2010.11.017
- Khalili, S.M.R., Davar, A. and Malekzadeh Fard, K. (2012), "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", Int. J. Mech. Sci., 56, 1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002
- Kim, Y.W. (2015), Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge", Compos. Part B: Eng., 70, 263-276. https://doi.org/10.1016/j.compositesb.2014.11.024
- Kolahchi, R., Moniri Bidgoli, A.M. and Heydari M.M. (2015a), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55, 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
- Kolahchi, R., Rabani Bidgoli, M. Beygipoor, Gh. and Fakhar, M.H. (2015b), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
- Kolahchi, R. and Moniribidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37, 265-274. https://doi.org/10.1007/s10483-016-2030-8
- Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65, 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbonnanotubereinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
- Mirzavand, B. and Eslami, M.R. (2011), "A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties", Acta Mech., 218, 87-101. https://doi.org/10.1007/s00707-010-0402-x
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Free vibration of functionally graded shells by a higherorder shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Euro. J. Mech. A/Solid., 37, 24-34. https://doi.org/10.1016/j.euromechsol.2012.05.005
- Ng, T.Y., Lam, Y.K., Liew, K.M. and Reddy J.N. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solid. Struct., 38, 1295-1300. https://doi.org/10.1016/S0020-7683(00)00090-1
- Nguyen, D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aero. Sci. Tech., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005
- Pellicano, F. and Avramov K.V. (2007), "Linear and nonlinear dynamics of a circular cylindrical shell connected to a rigid disk", Commun. Nonlin. Sci. Num. Simul., 12, 496-518. https://doi.org/10.1016/j.cnsns.2005.04.004
- Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vib., 318, 176-192. https://doi.org/10.1016/j.jsv.2008.03.056
- Reddy, J.N. (1984), "A Simple Higher Order Theory for Laminated Composite Plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. and Praveen, G.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plate", Int. J. Solid. Struct., 35, 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36, 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shen, H.Sh. and Zhang, Ch.L. (2011), "Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates", Computat. Mater. Sci., 50, 1022-1029. https://doi.org/10.1016/j.commatsci.2010.10.042
- Sheng, G.G. and Wang, X. (2009a), "Active control of functionally graded laminated cylindrical shells", Compos. Struct., 90, 448-457. https://doi.org/10.1016/j.compstruct.2009.04.017
- Sheng, G.G. and Wang, X. (2009b), "Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads", J. Sound Vib., 323, 772-789 . https://doi.org/10.1016/j.jsv.2009.01.017
- Sheng, G.G. and Wang, X. (2010), "Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads", Compos. Struct., 93, 162-170. https://doi.org/10.1016/j.compstruct.2010.06.004
- Shu, C., Chen, W., Xue, H. and Du, H. (2001), "Numerical study of grid distribution effects on accuracy of DQ analysis of beams and plates by error estimation of derivative approximation", Int. J. Numer. Meth. Eng., 51, 159-179. https://doi.org/10.1002/nme.150
- Wang, L. and Ni, Q. (2009), "A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid", Mech. Res. Commun., 36, 833-837. https://doi.org/10.1016/j.mechrescom.2009.05.003
- Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
- Xing, Y., Liu, B. and Xu, T. (2013), "Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions", Int. J. Mech. Sci., 75, 178-188. https://doi.org/10.1016/j.ijmecsci.2013.06.005
- Yang, J. and Shen, H.S. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261, 871-893. https://doi.org/10.1016/S0022-460X(02)01015-5
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014a), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Meth. Appl. Mech. Eng., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014b), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035
Cited by
- Hot fluid induced temperature-dependent vibration and instability of embedded FG-CNTRC Reddy pipes vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2017.1285460
- Effects of the passive electromagnetic damper on the behavior of a fluid-conveying pipeline pp.2041-2983, 2019, https://doi.org/10.1177/0954406218784627
- Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper vol.6, pp.2, 2016, https://doi.org/10.12989/csm.2017.6.2.175
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.515
- An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
- Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.141
- A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.599
- Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2016, https://doi.org/10.12989/sem.2018.67.1.021
- A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/sss.2018.22.3.303
- Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
- A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
- Stability Analysis of Multispan Pipeline Embedded in Temperature-Dependent Matrix vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6153291