Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Chu, P., Li, X.F., Wu, J.X. and Lee, K.Y. (2015), "Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending", Acta Mech., 226(7), 2235-2253. https://doi.org/10.1007/s00707-014-1294-y
- Ding, H.J., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Solid. Struct., 44(1), 176-196 https://doi.org/10.1016/j.ijsolstr.2006.04.026
- Ebrahimi, M.J. and Najafizadeh, M.M. (2014), "Free vibration analysis of two-dimensional functionally graded cylindrical shells", Appl. Math. Model., 38, 308-324. https://doi.org/10.1016/j.apm.2013.06.015
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.K. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75, 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018
- Hedia, H.S. (2005), "Comparison of one-dimensional and two-dimensional functionally graded materials for the backing shell of the cemented acetabular cup", J. Biomed. Mater. Res.: Part B. Appl. Biomater., 74B(2), 732-739. https://doi.org/10.1002/jbm.b.30258
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2009), "Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading", Sci. China Ser. G: Phys. Mech Astron, 52(8), 1244-1256. https://doi.org/10.1007/s11433-009-0152-8
- Huang, Y. and Li, X.F. (2011), "Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity", J. Eng. Mech., 137(1), 73-81. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206
- Khalili, S.M.R., Jafari, A.A. and Eftekhari, S.A. (2010), "A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads", Compos. Struct., 92, 2497-2511. https://doi.org/10.1016/j.compstruct.2010.02.012
- Koizumi, M. (1993), "The concept of FGM", Trans. Am. Ceram. Soc., 34, 3-10.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Kuo, H.Y. and Chen, T.Y. (2005), "Steady and transient Green's functions for anisotropic conduction in an exponentially graded solid", Int. J. Solid. Struct., 42(3-4), 1111-1128. https://doi.org/10.1016/j.ijsolstr.2004.06.060
- Leung, A.Y.T. and Zheng. J.J. (2007), "Closed form stress distribution in 2D elasticity for all boundary conditions", Appl. Math. Mech. Eng. Ed., 28(12), 1629-1642. https://doi.org/10.1007/s10483-007-1210-z
- Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aero. Sci. Tech., 45,154-164. https://doi.org/10.1016/j.ast.2015.05.006
- Lu, C.F., Chen, W.Q., Xu, R.Q. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solid. Struct., 45(1), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Meth. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555
- Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solid. Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M. and Jorge R.M.N. (2011), "Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions", Mech. Res. Commun., 38(5), 368-371. https://doi.org/10.1016/j.mechrescom.2011.04.011
- Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multi-directional functionally graded annular plates", Appl. Math. Model., 34, 608-616. https://doi.org/10.1016/j.apm.2009.06.009
- Qian, L.F. and Batra, R.C. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. https://doi.org/10.1016/j.jsv.2004.01.042
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44, 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
- Sankar, B.V. (2001), "An elastic solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shahba, A., Attarnejad, R. and Hajilar, S. (2012), "A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams", Mech. Adv. Mater. Struct., 20(8), 696-707. https://doi.org/10.1080/15376494.2011.640971
- Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock & Vibration, 18(5), 683-696. https://doi.org/10.1155/2011/591716
- Shahba, A., Attarnejad. R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B: Eng., 42, 801-808.
- Shariyat, M. and Alipour, M.M. (2013), "A power series solution for vibration and complex modal stress analyses of variable thickness viscoelastic two-directional FGM circular plates on elastic foundations", Appl. Math. Model., 37, 3063-3076. https://doi.org/10.1016/j.apm.2012.07.037
- Simsek, M. and Cansiz, S. (2012), "Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load", Compos. Struct., 94, 2861-2878. https://doi.org/10.1016/j.compstruct.2012.03.016
- Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1, 1-11.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021
- Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95,740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
- Sobhani Aragh, B., Hedayati, H., Borzabadi Farahani, E. and Hedayati, M. (2011), "A novel 2-D six-parameter power-law distribution for free vibration and vibrational displacements of two-dimensional functionally graded fiber-reinforced curved panels", Eur. J. Mech. A/Solid., 30, 865-883. https://doi.org/10.1016/j.euromechsol.2011.05.002
- Sutradhar, A. and Paulino, G.H. (2004), "The simple boundary element method for transient heat conduction in functionally graded material", Comp. Meth. Appl. Mech. Eng., 193(42-44), 4511-4539. https://doi.org/10.1016/j.cma.2004.02.018
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, NY, USA.
- Yao, W.A., Zhong, W.X. and Lim, C.W. (2009), Symplectic Elasticity, World Scientific Publishing Company, New Jersey, USA.
- Zhao, L. and Wei, Z.G. (2015), "Analytical solutions for functionally graded beams under arbitrary distribution loads via the symplectic approach", Advan. Mech. Eng., Article ID, 321263.
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012a), "New assessment on the Saint-Venant solutions for functionally graded materials beams", Mech. Res. Commun., 43, 1-6. https://doi.org/10.1016/j.mechrescom.2012.03.009
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012b), "Two-dimensional complete rational analysis of functionally graded beams within symplectic framework", Appl. Math. Mech. Eng. Ed., 33(10), 1225-1238. https://doi.org/10.1007/s10483-012-1617-8
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012c), "Symplectic elasticity for bi-directional functionally graded materials", Mech. Mater., 54, 32-42. https://doi.org/10.1016/j.mechmat.2012.06.001
- Zhong, W.X. (1995), A New Systematic Methodology for Theory of Elasticity, Dalian University of Technology Press, Dalian, DL, China. (in Chinese)
Cited by
- Measurement Model for Young's Modulus of Axially Functionally Graded Materials vol.748, 2017, https://doi.org/10.4028/www.scientific.net/KEM.748.391
- Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2016, https://doi.org/10.12989/sem.2018.66.6.729
- Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates vol.8, pp.2, 2016, https://doi.org/10.12989/anr.2020.8.2.115
- Bending and free vibrational analysis of bi-directional functionally graded beams with circular cross-section vol.41, pp.10, 2016, https://doi.org/10.1007/s10483-020-2670-6