Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Abdel-Jaber, M.S., Al-Qaisia, A.A., Abdel-Jaber, M. and Beale, R.G. (2008), "Nonlinear natural frequencies of an elastically restrained tapered beam", J. Sound Vib., 313(3-5), 772-783. https://doi.org/10.1016/j.jsv.2007.11.050
- Abrate, S. (1995), "Vibration of non-uniform rods and beams", J. Sound Vib., 185(4), 703-716. https://doi.org/10.1006/jsvi.1995.0410
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Attarnejad, R., Shahba, A. and Eslaminia, M. (2011), "Dynamic basic displacement functions for free vibration analysis of tapered beams", J. Vib. Control, 17(14), 2222-2238. https://doi.org/10.1177/1077546310396430
- Auciello, N.M. and Nole, G. (1998), "Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end", J. Sound Vib., 214(1), 105-119. https://doi.org/10.1006/jsvi.1998.1538
- Baghani, M., Mazaheri, H. and Salarieh, H. (2014), "Analysis of large amplitude free vibrations of clamped tapered beams on a nonlinear elastic foundation", Appl. Math. Model., 38(3), 1176-1186. https://doi.org/10.1016/j.apm.2013.06.040
- Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H. and Ratazzi, A.R. (2013), "Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions", Meccanica, 48(6), 1289-1311. https://doi.org/10.1007/s11012-012-9668-5
- Chen, D.W. and Liu, T.L. (2006), "Free and forced vibrations of a tapered cantilever beam carrying multiple point masses", Struct. Eng. Mech., 23(2), 209-216. https://doi.org/10.12989/sem.2006.23.2.209
- Clementi, F., Demeio, L., Mazzilli, C.E.N. and Lenci, S. (2015), "Nonlinear vibrations of non-uniform beams by the MTS asymptotic expansion method", Continuum. Mech. Thermodyn., 27(4-5), 703-717. https://doi.org/10.1007/s00161-014-0368-3
- Dugush, Y.A. and Eisenberger, M. (2002), "Vibrations of non-uniform continuous beams under moving loads", J. Sound Vib., 254(5), 911-926. https://doi.org/10.1006/jsvi.2001.4135
- Fang, J. and Zhou, D. (2015), "Free vibration analysis of rotating axially functionally graded-tapered beams using Chebyshev-Ritz method", Mater. Res. Innov., 19, 1255-1262.
- Georgian, J.C. (1965), "Discussion: 'Vibration Frequencies of Tapered Bars and Circular Plates' (Conway, HD, Becker, ECH, and Dubil, JF, 1964, ASME J. Appl. Mech., 31, 329-331)", J. Appl. Mech., 32(1), 234-235. https://doi.org/10.1115/1.3625765
- Gunda, J.B., Singh, A.P., Chhabra, P.S. and Ganguli, R. (2007), "Free vibration analysis of rotating tapered blades using Fourier-p superelement", Struct. Eng. Mech., 27(2), 243-257. https://doi.org/10.12989/sem.2007.27.2.243
- He, P., Liu, Z.S. and Li, C. (2013), "An improved beam element for beams with variable axial parameters", Shock Vib., 20(4), 601-617. https://doi.org/10.1155/2013/708910
- Karimpour, S., Ganji, S.S., Barari, A., Ibsen, L.B. and Domairry, G. (2012), "Nonlinear vibration of an elastically restrained tapered beam", Sci. China-Phys. Mech. Astron., 55(10), 1925-1930. https://doi.org/10.1007/s11433-012-4661-5
- Katsikadelis, J.T. and Tsiatas, G.C. (2004), "Non-linear dynamic analysis of beams with variable stiffness", J. Sound Vib., 270(4), 847-863. https://doi.org/10.1016/S0022-460X(03)00635-7
- Lenci, S., Clementi, F. and Mazzilli, C.E.N. (2013), "Simple formulas for the natural frequencies of nonuniform cables and beams", Int. J. Mech. Sci., 77, 155-163. https://doi.org/10.1016/j.ijmecsci.2013.09.028
- Liu, A.Q., Zhang, X.M., Lu, C., Wang, F. and Liu, Z.S. (2003), "Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge", J. Micromech. Microeng., 13(3), 400-411. https://doi.org/10.1088/0960-1317/13/3/308
- Mao, Q.B. (2015), "AMDM for free vibration analysis of rotating tapered beams", Struct. Eng. Mech., 54(3), 419-432. https://doi.org/10.12989/sem.2015.54.3.419
- Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM", J. Mech. Sci. Technol., 29(6), 2297-2305. https://doi.org/10.1007/s12206-015-0522-2
- Pradhan, S.C. and Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. https://doi.org/10.12989/sem.2009.32.6.811
- Raj, A. and Sujith, R.I. (2005), "Closed-form solutions for the free longitudinal vibration of inhomogeneous rods", J. Sound Vib., 283(3), 1015-1030. https://doi.org/10.1016/j.jsv.2004.06.003
- Rajasekaran, S. (2013), "Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach", Meccanica, 48(5), 1053-1070. https://doi.org/10.1007/s11012-012-9651-1
- Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially functionally graded materials", Struct. Eng. Mech., 45(4), 569-594. https://doi.org/10.12989/sem.2013.45.4.569
- Rao, B.N. and Rao, G.V. (1988), "Large amplitude vibrations of a tapered cantilever beam", J. Sound Vib., 127(1), 173-178. https://doi.org/10.1016/0022-460X(88)90357-4
- Saboori, B. and Khalili, S.M.R. (2012), "Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method", Struct. Eng. Mech., 42(3), 409-424. https://doi.org/10.12989/sem.2012.42.3.409
- Sadeghi, A. (2012), "The flexural vibration of V shaped atomic force microscope cantilevers by using the Timoshenko beam theory", ZAMM-Z. Angew. Math. Mech., 92(10), 782-800. https://doi.org/10.1002/zamm.201100100
- Sadeghi, A. (2015), "A new investigation for double tapered atomic force microscope cantilevers by considering the damping effect", ZAMM-Z. Angew. Math. Mech., 95(3), 283-296. https://doi.org/10.1002/zamm.201200268
- Sakiyama, T. (1985), "A method of analyzing the bending vibration of any type of tapered beams", J. Sound Vib., 101(2), 267-270. https://doi.org/10.1016/S0022-460X(85)81221-9
- Sato, K. (1980), "Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force", Int. J. Mech. Sci., 22(2), 109-115. https://doi.org/10.1016/0020-7403(80)90047-8
- Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.1155/2011/591716
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3088-3105.
- Shames, I.H. (1985), Energy and finite element methods in structural mechanics, CRC Press
- Swaddiwudhipong, S. and Liu, Z.S. (1996), "Dynamic response of large strain elasto-plastic plate and shell structures", Thin Wall. Struct., 26(4), 223-239. https://doi.org/10.1016/0263-8231(96)00031-6
- Swaddiwudhipong, S. and Liu, Z.S. (1997), "Response of laminated composite plates and shells", Compos. Struct., 37(1), 21-32. https://doi.org/10.1016/S0263-8223(97)00051-2
- Wagner, H. (1965), "Large-amplitude free vibrations of a beam", J. Appl. Mech., 32(4), 887-892. https://doi.org/10.1115/1.3627331
- Wu, B.S., Sun, W.P. and Lim, C.W. (2006), "An analytical approximate technique for a class of strongly non-linear oscillators", Int. J. Nonlin. Mech., 41(6), 766-774. https://doi.org/10.1016/j.ijnonlinmec.2006.01.006
- Wu, J.S. and Hsieh, M. (2000), "Free vibration analysis of a non-uniform beam with multiple point masses", Struct. Eng. Mech., 9(5), 449-467. https://doi.org/10.12989/sem.2000.9.5.449
- Yardimoglu, B. (2006), "Vibration analysis of rotating tapered Timoshenko beams by a new finite element model", Shock Vib., 13(2), 117-126. https://doi.org/10.1155/2006/283150
- Yu, Y.P., Wu, B.S. and Lim, C.W. (2012), "Numerical and analytical approximations to large post-buckling deformation of MEMS", Int. J. Mech. Sci., 55(1), 95-103. https://doi.org/10.1016/j.ijmecsci.2011.12.010
Cited by
- Dynamic Response and Stability Analysis with Newton Harmonic Balance Method for Nonlinear Oscillating Dielectric Elastomer Balloons pp.1793-6764, 2018, https://doi.org/10.1142/S0219455418501523
- Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.193
- A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks vol.66, pp.1, 2018, https://doi.org/10.12989/sem.2018.66.1.125
- Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems vol.73, pp.3, 2020, https://doi.org/10.12989/sem.2020.73.3.331