DOI QR코드

DOI QR Code

Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method

  • Sun, Weipeng (Department of Mechanics and Engineering Science, School of Mathematics, Jilin University) ;
  • Sun, Youhong (College of Construction Engineering, Jilin University) ;
  • Yu, Yongping (College of Construction Engineering, Jilin University) ;
  • Zheng, Shaopeng (College of Construction Engineering, Jilin University)
  • Received : 2016.01.05
  • Accepted : 2016.02.23
  • Published : 2016.07.10

Abstract

In this paper, an alternative analytical method is presented to evaluate the nonlinear vibration behavior of single and double tapered cantilever beams. The admissible lateral displacement function satisfying the geometric boundary conditions of a single or double tapered cantilever beam is derived by using Rayleigh-Ritz method. Based on the Lagrange method and the Newton Harmonic Balance (NHB) method, analytical approximate solutions in closed and explicit form are obtained. These approximate solutions show excellent agreement with those of numeric method for small as well as large amplitude. Moreover, due to brevity of expressions, the present analytical approximate solutions are convenient to investigate effects of various parameters on the large amplitude vibration response of tapered beams.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abdel-Jaber, M.S., Al-Qaisia, A.A., Abdel-Jaber, M. and Beale, R.G. (2008), "Nonlinear natural frequencies of an elastically restrained tapered beam", J. Sound Vib., 313(3-5), 772-783. https://doi.org/10.1016/j.jsv.2007.11.050
  2. Abrate, S. (1995), "Vibration of non-uniform rods and beams", J. Sound Vib., 185(4), 703-716. https://doi.org/10.1006/jsvi.1995.0410
  3. Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
  4. Attarnejad, R., Shahba, A. and Eslaminia, M. (2011), "Dynamic basic displacement functions for free vibration analysis of tapered beams", J. Vib. Control, 17(14), 2222-2238. https://doi.org/10.1177/1077546310396430
  5. Auciello, N.M. and Nole, G. (1998), "Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end", J. Sound Vib., 214(1), 105-119. https://doi.org/10.1006/jsvi.1998.1538
  6. Baghani, M., Mazaheri, H. and Salarieh, H. (2014), "Analysis of large amplitude free vibrations of clamped tapered beams on a nonlinear elastic foundation", Appl. Math. Model., 38(3), 1176-1186. https://doi.org/10.1016/j.apm.2013.06.040
  7. Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H. and Ratazzi, A.R. (2013), "Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions", Meccanica, 48(6), 1289-1311. https://doi.org/10.1007/s11012-012-9668-5
  8. Chen, D.W. and Liu, T.L. (2006), "Free and forced vibrations of a tapered cantilever beam carrying multiple point masses", Struct. Eng. Mech., 23(2), 209-216. https://doi.org/10.12989/sem.2006.23.2.209
  9. Clementi, F., Demeio, L., Mazzilli, C.E.N. and Lenci, S. (2015), "Nonlinear vibrations of non-uniform beams by the MTS asymptotic expansion method", Continuum. Mech. Thermodyn., 27(4-5), 703-717. https://doi.org/10.1007/s00161-014-0368-3
  10. Dugush, Y.A. and Eisenberger, M. (2002), "Vibrations of non-uniform continuous beams under moving loads", J. Sound Vib., 254(5), 911-926. https://doi.org/10.1006/jsvi.2001.4135
  11. Fang, J. and Zhou, D. (2015), "Free vibration analysis of rotating axially functionally graded-tapered beams using Chebyshev-Ritz method", Mater. Res. Innov., 19, 1255-1262.
  12. Georgian, J.C. (1965), "Discussion: 'Vibration Frequencies of Tapered Bars and Circular Plates' (Conway, HD, Becker, ECH, and Dubil, JF, 1964, ASME J. Appl. Mech., 31, 329-331)", J. Appl. Mech., 32(1), 234-235. https://doi.org/10.1115/1.3625765
  13. Gunda, J.B., Singh, A.P., Chhabra, P.S. and Ganguli, R. (2007), "Free vibration analysis of rotating tapered blades using Fourier-p superelement", Struct. Eng. Mech., 27(2), 243-257. https://doi.org/10.12989/sem.2007.27.2.243
  14. He, P., Liu, Z.S. and Li, C. (2013), "An improved beam element for beams with variable axial parameters", Shock Vib., 20(4), 601-617. https://doi.org/10.1155/2013/708910
  15. Karimpour, S., Ganji, S.S., Barari, A., Ibsen, L.B. and Domairry, G. (2012), "Nonlinear vibration of an elastically restrained tapered beam", Sci. China-Phys. Mech. Astron., 55(10), 1925-1930. https://doi.org/10.1007/s11433-012-4661-5
  16. Katsikadelis, J.T. and Tsiatas, G.C. (2004), "Non-linear dynamic analysis of beams with variable stiffness", J. Sound Vib., 270(4), 847-863. https://doi.org/10.1016/S0022-460X(03)00635-7
  17. Lenci, S., Clementi, F. and Mazzilli, C.E.N. (2013), "Simple formulas for the natural frequencies of nonuniform cables and beams", Int. J. Mech. Sci., 77, 155-163. https://doi.org/10.1016/j.ijmecsci.2013.09.028
  18. Liu, A.Q., Zhang, X.M., Lu, C., Wang, F. and Liu, Z.S. (2003), "Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge", J. Micromech. Microeng., 13(3), 400-411. https://doi.org/10.1088/0960-1317/13/3/308
  19. Mao, Q.B. (2015), "AMDM for free vibration analysis of rotating tapered beams", Struct. Eng. Mech., 54(3), 419-432. https://doi.org/10.12989/sem.2015.54.3.419
  20. Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM", J. Mech. Sci. Technol., 29(6), 2297-2305. https://doi.org/10.1007/s12206-015-0522-2
  21. Pradhan, S.C. and Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. https://doi.org/10.12989/sem.2009.32.6.811
  22. Raj, A. and Sujith, R.I. (2005), "Closed-form solutions for the free longitudinal vibration of inhomogeneous rods", J. Sound Vib., 283(3), 1015-1030. https://doi.org/10.1016/j.jsv.2004.06.003
  23. Rajasekaran, S. (2013), "Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach", Meccanica, 48(5), 1053-1070. https://doi.org/10.1007/s11012-012-9651-1
  24. Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially functionally graded materials", Struct. Eng. Mech., 45(4), 569-594. https://doi.org/10.12989/sem.2013.45.4.569
  25. Rao, B.N. and Rao, G.V. (1988), "Large amplitude vibrations of a tapered cantilever beam", J. Sound Vib., 127(1), 173-178. https://doi.org/10.1016/0022-460X(88)90357-4
  26. Saboori, B. and Khalili, S.M.R. (2012), "Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method", Struct. Eng. Mech., 42(3), 409-424. https://doi.org/10.12989/sem.2012.42.3.409
  27. Sadeghi, A. (2012), "The flexural vibration of V shaped atomic force microscope cantilevers by using the Timoshenko beam theory", ZAMM-Z. Angew. Math. Mech., 92(10), 782-800. https://doi.org/10.1002/zamm.201100100
  28. Sadeghi, A. (2015), "A new investigation for double tapered atomic force microscope cantilevers by considering the damping effect", ZAMM-Z. Angew. Math. Mech., 95(3), 283-296. https://doi.org/10.1002/zamm.201200268
  29. Sakiyama, T. (1985), "A method of analyzing the bending vibration of any type of tapered beams", J. Sound Vib., 101(2), 267-270. https://doi.org/10.1016/S0022-460X(85)81221-9
  30. Sato, K. (1980), "Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force", Int. J. Mech. Sci., 22(2), 109-115. https://doi.org/10.1016/0020-7403(80)90047-8
  31. Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.1155/2011/591716
  32. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3088-3105.
  33. Shames, I.H. (1985), Energy and finite element methods in structural mechanics, CRC Press
  34. Swaddiwudhipong, S. and Liu, Z.S. (1996), "Dynamic response of large strain elasto-plastic plate and shell structures", Thin Wall. Struct., 26(4), 223-239. https://doi.org/10.1016/0263-8231(96)00031-6
  35. Swaddiwudhipong, S. and Liu, Z.S. (1997), "Response of laminated composite plates and shells", Compos. Struct., 37(1), 21-32. https://doi.org/10.1016/S0263-8223(97)00051-2
  36. Wagner, H. (1965), "Large-amplitude free vibrations of a beam", J. Appl. Mech., 32(4), 887-892. https://doi.org/10.1115/1.3627331
  37. Wu, B.S., Sun, W.P. and Lim, C.W. (2006), "An analytical approximate technique for a class of strongly non-linear oscillators", Int. J. Nonlin. Mech., 41(6), 766-774. https://doi.org/10.1016/j.ijnonlinmec.2006.01.006
  38. Wu, J.S. and Hsieh, M. (2000), "Free vibration analysis of a non-uniform beam with multiple point masses", Struct. Eng. Mech., 9(5), 449-467. https://doi.org/10.12989/sem.2000.9.5.449
  39. Yardimoglu, B. (2006), "Vibration analysis of rotating tapered Timoshenko beams by a new finite element model", Shock Vib., 13(2), 117-126. https://doi.org/10.1155/2006/283150
  40. Yu, Y.P., Wu, B.S. and Lim, C.W. (2012), "Numerical and analytical approximations to large post-buckling deformation of MEMS", Int. J. Mech. Sci., 55(1), 95-103. https://doi.org/10.1016/j.ijmecsci.2011.12.010

Cited by

  1. Dynamic Response and Stability Analysis with Newton Harmonic Balance Method for Nonlinear Oscillating Dielectric Elastomer Balloons pp.1793-6764, 2018, https://doi.org/10.1142/S0219455418501523
  2. Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.193
  3. A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks vol.66, pp.1, 2018, https://doi.org/10.12989/sem.2018.66.1.125
  4. Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems vol.73, pp.3, 2020, https://doi.org/10.12989/sem.2020.73.3.331