DOI QR코드

DOI QR Code

Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10

Covalent Organic Framework (COF-10)를 이용한 암모니아 흡착 및 탈착에 관한 연구

  • Yang, Heena (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Kim, Iktae (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Ko, Youngdon (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Kim, Shindong (Environment & Chemistry solution) ;
  • Kim, Whajung (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University)
  • 양희나 (건국대학교 융합신소재공학과) ;
  • 김익태 (건국대학교 융합신소재공학과) ;
  • 고영돈 (건국대학교 융합신소재공학과) ;
  • 김신동 (이앤켐솔루션) ;
  • 김화중 (건국대학교 융합신소재공학과)
  • Received : 2016.03.16
  • Accepted : 2016.04.05
  • Published : 2016.06.10

Abstract

Ammonia gas as a hydrogen source has received great attention since the importance of hydrogen gas as a clean energy source increased. However, ammonia is toxic and corrosive to metal such that the absorbent that can store and transport ammonia became an important issue. As an effort to solve this, a large pored covalent organic framework, COF-10 was proposed as an adsorbent for storage and safe transportation of ammonia. During the ammonia adsorption process, boron in COF-10 structure can act as a Lewis acid site and bind with ammonia. In this study, COF was synthesized and its structure was identified by BET, XRD and FT-IR. The adsorption characteristics of COF were investigated by TPD and adsorption isotherm. The COF-10 showed an excellent adsorption capacity for ammonia (9.79 mmol/g) which could be utilized as an ammonia adsorbent.

수소가 청정 에너지 원으로서의 중요성이 증가하면서 수소의 생산원인 암모니아 기체가 큰 주목을 받고 있다. 그러나 암모니아가 금속을 잘 부식시키고 유독성을 가지고 있기 때문에 암모니아의 저장과 운반을 가능하게 하는 흡착제의 연구가 다각도로 진행되고 있다. 이 중 공유결합 유기구조 물질(covalent organic framework)의 하나인 COF-10은 붕소를 포함한 큰 기공을 가진 물질이다. 암모니아 흡착과정에서 COF-10의 구조 안에 있는 붕소는 루이스 산으로 작용하여 암모니아와 강한 결합을 한다. 본 논문에서는 이러한 COF-10을 합성하여 BET, XRD, FT-IR을 통해 구조를 확인한다. 또한 TPD와 등온 흡착 실험을 통해 실제 암모니아의 흡착능력에 대한 분석을 진행하였다. COF-10는 9.79 mmol/g으로 우수한 암모니아 흡착 능력을 보였으며 암모니아 흡착제로서 활용 가능할 것으로 사료된다.

Keywords

References

  1. J. Phillips, Control and pollution prevention options for ammonia emissions, EPA-456/R-95-002, 1-69, ViGYAN Incorporated, VA, USA (1995).
  2. D. A. Kramer, Mineral and Commodities Summaries, US Geological Survey, Washington, USA (2007).
  3. Y. Song and J. H. Dai, Mechanisms of dopants influence on hydrogen uptake in COF-108: A first principles study, Int. J. Hydrogen Energy, 38, 14668-14674 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.025
  4. T. G. Glover, G. W. Peterson, J. B. DeCoste, and M. A. Browe, Adsorption of ammonia by sulfuric acid treated zirconium hydroxide, Langmuir, 28(28), 10478-10487 (2012). https://doi.org/10.1021/la302118h
  5. A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous. Mesoporous. Mater., 218, 15-23 (2015). https://doi.org/10.1016/j.micromeso.2015.06.030
  6. A. M. B. Furtado, Y. Wang, T. G. Glover, and M. D. LeVan, MCM-41 impregnated with active metal sites:Synthesis, characterization, and ammonia adsorption, Microporous. Mesoporous. Mater., 142, 730-739 (2011). https://doi.org/10.1016/j.micromeso.2011.01.027
  7. C. Petit, B. Mendoza, and T. J. Bandosz, Reactive adsorption of ammonia on Cu-based MOF/graphene composites, Langmuir, 26(19), 15302-15309 (2010). https://doi.org/10.1021/la1021092
  8. T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of $CaCl_{2}$ and multi-walled carbon nanotubes, Int. J. Refrig., 46, 165-172 (2014). https://doi.org/10.1016/j.ijrefrig.2014.02.014
  9. C. H. Christensen, R. Z. Sorensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmoe, R. Kohler, and J. K. Norskov, Metal ammine complexes for hydrogen storage, J. Mater. Chem., 15, 4106-4108 (2005). https://doi.org/10.1039/b511589b
  10. D. Beaudoin, T. Maris, and J. D. Wuest, Constructing monocrystalline covalent organic networks by polymerization, Nat. Chem., 5, 830-834 (2013). https://doi.org/10.1038/nchem.1730
  11. A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Martzger, and O. M. Yaghi, Porous, crystalline, covalent organic frameworks, Science, 310(5751), 1166-1170 (2005). https://doi.org/10.1126/science.1120411
  12. Z. Xiang and D. Cao, Porous covalent-organic materials: synthesis, clean energy application and design, J. Mater. Chem. A, 1, 2691-2718 (2012).
  13. J. F. Dienstmaier, A. M. Gigler, A. J. Goetz, P. Knochel, T. Bein, A. Lyapin, S. Reichlmaier, W. M. Heckl, and M. Lackinger, Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation, ACS Nano, 5(12), 9737-9745 (2011). https://doi.org/10.1021/nn2032616
  14. Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 42, 8012-8031 (2013). https://doi.org/10.1039/c3cs60160a
  15. Q. Liu, Z. Tang, M. Wu, and Z. Zhou, Design, preparation and application of conjugated microporous polymers, Polym. Int., 63(3), 381-392 (2014). https://doi.org/10.1002/pi.4640
  16. S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Webing, A. Schneemann, G. V. Tendeloo, and R. A. Fischer, Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1, Chem. Commun., 49, 463-465 (2013). https://doi.org/10.1039/C2CC37183A
  17. J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, and O. M. Yaghi, Reticular synthesis of covalent organic borosilicate frameworks, J. Am. Chem. Soc., 130(36), 11872-11873 (2008). https://doi.org/10.1021/ja805064f
  18. L. Zhao and C. Zhong, Negative thermal expansion in covalent organic framework COF-102, J. Phys. Chem. C., 113(39), 16860-16862 (2009). https://doi.org/10.1021/jp906806k
  19. E. L. Spitler, M. R. Giovino, S. L. White, and W. R. Dichtel, A mechanistic study of Lewis acid-catalyzed covalent organic framework formation, Chem. Sci., 2, 1588-1593 (2011). https://doi.org/10.1039/C1SC00260K
  20. J. Zhang, L. Wang, N. Li, J. Liu, W. Zhang, N. Zhou, and X. Zhu, A novel azobenzene covalent organic framework, Cryst. Eng. Comm., 16, 6547-6551 (2014). https://doi.org/10.1039/c4ce00369a
  21. Y. Peng, T. Ben, Y. Jia, D. Yang, H. Zhao, S. Qiu, and X. Yao, Dehydrogenation of ammonia borane confined by low-density porous aromatic famework, J. Phys. Chem., 116(49), 25694-25700 (2012).
  22. C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, and O. M. Yaghi Exceptional ammonia uptake by a covalent organic framework, Nat. Chem., 2, 235-238 (2010). https://doi.org/10.1038/nchem.548
  23. A. P. Cote, Reticular Synthesis of Microporous and Mesoporous 2D Covalent-Organic Frameworks, J. Am. Chem. Soc., 129(43), 12914-12915 (2007). https://doi.org/10.1021/ja0751781
  24. G. Guan, T. Kida, K. Jusakabe, K. Kimura, E. Abe, and A. Yoshida, Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10, Appl. Catal. A, 71-78 (2005).