References
- J. Phillips, Control and pollution prevention options for ammonia emissions, EPA-456/R-95-002, 1-69, ViGYAN Incorporated, VA, USA (1995).
- D. A. Kramer, Mineral and Commodities Summaries, US Geological Survey, Washington, USA (2007).
- Y. Song and J. H. Dai, Mechanisms of dopants influence on hydrogen uptake in COF-108: A first principles study, Int. J. Hydrogen Energy, 38, 14668-14674 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.025
- T. G. Glover, G. W. Peterson, J. B. DeCoste, and M. A. Browe, Adsorption of ammonia by sulfuric acid treated zirconium hydroxide, Langmuir, 28(28), 10478-10487 (2012). https://doi.org/10.1021/la302118h
- A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous. Mesoporous. Mater., 218, 15-23 (2015). https://doi.org/10.1016/j.micromeso.2015.06.030
- A. M. B. Furtado, Y. Wang, T. G. Glover, and M. D. LeVan, MCM-41 impregnated with active metal sites:Synthesis, characterization, and ammonia adsorption, Microporous. Mesoporous. Mater., 142, 730-739 (2011). https://doi.org/10.1016/j.micromeso.2011.01.027
- C. Petit, B. Mendoza, and T. J. Bandosz, Reactive adsorption of ammonia on Cu-based MOF/graphene composites, Langmuir, 26(19), 15302-15309 (2010). https://doi.org/10.1021/la1021092
-
T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of
$CaCl_{2}$ and multi-walled carbon nanotubes, Int. J. Refrig., 46, 165-172 (2014). https://doi.org/10.1016/j.ijrefrig.2014.02.014 - C. H. Christensen, R. Z. Sorensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmoe, R. Kohler, and J. K. Norskov, Metal ammine complexes for hydrogen storage, J. Mater. Chem., 15, 4106-4108 (2005). https://doi.org/10.1039/b511589b
- D. Beaudoin, T. Maris, and J. D. Wuest, Constructing monocrystalline covalent organic networks by polymerization, Nat. Chem., 5, 830-834 (2013). https://doi.org/10.1038/nchem.1730
- A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Martzger, and O. M. Yaghi, Porous, crystalline, covalent organic frameworks, Science, 310(5751), 1166-1170 (2005). https://doi.org/10.1126/science.1120411
- Z. Xiang and D. Cao, Porous covalent-organic materials: synthesis, clean energy application and design, J. Mater. Chem. A, 1, 2691-2718 (2012).
- J. F. Dienstmaier, A. M. Gigler, A. J. Goetz, P. Knochel, T. Bein, A. Lyapin, S. Reichlmaier, W. M. Heckl, and M. Lackinger, Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation, ACS Nano, 5(12), 9737-9745 (2011). https://doi.org/10.1021/nn2032616
- Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 42, 8012-8031 (2013). https://doi.org/10.1039/c3cs60160a
- Q. Liu, Z. Tang, M. Wu, and Z. Zhou, Design, preparation and application of conjugated microporous polymers, Polym. Int., 63(3), 381-392 (2014). https://doi.org/10.1002/pi.4640
- S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Webing, A. Schneemann, G. V. Tendeloo, and R. A. Fischer, Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1, Chem. Commun., 49, 463-465 (2013). https://doi.org/10.1039/C2CC37183A
- J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, and O. M. Yaghi, Reticular synthesis of covalent organic borosilicate frameworks, J. Am. Chem. Soc., 130(36), 11872-11873 (2008). https://doi.org/10.1021/ja805064f
- L. Zhao and C. Zhong, Negative thermal expansion in covalent organic framework COF-102, J. Phys. Chem. C., 113(39), 16860-16862 (2009). https://doi.org/10.1021/jp906806k
- E. L. Spitler, M. R. Giovino, S. L. White, and W. R. Dichtel, A mechanistic study of Lewis acid-catalyzed covalent organic framework formation, Chem. Sci., 2, 1588-1593 (2011). https://doi.org/10.1039/C1SC00260K
- J. Zhang, L. Wang, N. Li, J. Liu, W. Zhang, N. Zhou, and X. Zhu, A novel azobenzene covalent organic framework, Cryst. Eng. Comm., 16, 6547-6551 (2014). https://doi.org/10.1039/c4ce00369a
- Y. Peng, T. Ben, Y. Jia, D. Yang, H. Zhao, S. Qiu, and X. Yao, Dehydrogenation of ammonia borane confined by low-density porous aromatic famework, J. Phys. Chem., 116(49), 25694-25700 (2012).
- C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, and O. M. Yaghi Exceptional ammonia uptake by a covalent organic framework, Nat. Chem., 2, 235-238 (2010). https://doi.org/10.1038/nchem.548
- A. P. Cote, Reticular Synthesis of Microporous and Mesoporous 2D Covalent-Organic Frameworks, J. Am. Chem. Soc., 129(43), 12914-12915 (2007). https://doi.org/10.1021/ja0751781
- G. Guan, T. Kida, K. Jusakabe, K. Kimura, E. Abe, and A. Yoshida, Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10, Appl. Catal. A, 71-78 (2005).