DOI QR코드

DOI QR Code

주파수 분할 방식의 거대 다중 안테나 시스템을 위한 빔형성 기반의 채널상태정보 기준신호 전송기술

Beamforming Based CSI Reference Signal Transmission for FDD Massive MIMO Systems

  • Hong, Jun-Ki (Yonsei University, Department of Electrical and Electronic Engineering) ;
  • Jo, Han-Shin (Hanbat National University, Department of Electronics and Control Engineering) ;
  • Mun, Cheol (Korea National University of Transportation, Dept. of Information and Communication Engineering) ;
  • Yook, Jong-Gwan (Yonsei University, Department of Electrical and Electronic Engineering)
  • 투고 : 2016.01.29
  • 심사 : 2016.04.28
  • 발행 : 2016.05.31

초록

기존 MIMO 시스템 대비 수십 또는 수백 배 많은 송신 안테나들이 설치되어 있는 주파수 분할(frequency division duplex, FDD) 방식의 거대 다중 안테나(massive multiple-input mulitple-output, Massive MIMO)에선 송신 안테나 별 CSI-RS(channel state information reference signal) 전송을 위해 기존 MIMO 시스템 대비 너무 많은 하향 및 상향링크 자원 요소가 필요하다는 한계를 갖는다. 이러한 단점들을 극복하기 위해 본 논문에선 주파수 분할 방식의 거대 다중 안테나 시스템에서 많은 송신 안테나를 사용하더라도 자원요소(resource element, RE)를 재사용함으로써 송신 안테나 수에 비례하지 않는 제한된 양의 하향링크 자원만을 사용하여 CSI-RS를 효과적으로 전송하는 기술 및 자원격자 구조를 제안하였다.

Since FDD massive MIMO (multiple-input multiple-output) system deploys hundreds of transmit antennas at base station (BS) compared to conventional MIMO system, the overhead of transmitting channel state information reference signal (CSI-RS) increases proportionally to the number of transmit-antennas. To overcome these disadvantages, we proposed beamforming based CSI-RS transmission technique for FDD massive MIMO system which transmit CSI-RS by limited amount of downlink resources.

키워드

참고문헌

  1. Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2014-2019 white paper, Retrieved Mar., 29, 2016, from http://www.cisco.com
  2. T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010. https://doi.org/10.1109/TWC.2010.092810.091092
  3. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013. https://doi.org/10.1109/MSP.2011.2178495
  4. B. Shim and B. Lee, "Evolution of MIMO technology," J. KICS, vol. 38A, no. 8, pp. 712-723. Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.712
  5. Y.-H. Nam, et al., "Full-dimension MIMO (FD-MIMO) for next generation cellular technology," IEEE Commun. Mag., vol. 51, no. 6, pp. 172-179, Jun. 2013.
  6. J. Chung, Y. Han, and J. Lee, "Adaptive channel estimation techniques for FDD massive MIMO systems," J. KICS, vol. 40, no. 7, pp. 1239-1247. Jul. 2015. https://doi.org/10.7840/kics.2015.40.7.1239
  7. Y.-G. Lim and C.-B. Chae, "Limited feedback precoding for correlated massive MIMO systems," J. KICS, vol. 39A, no. 7, pp. 431-436, Jul. 2014. https://doi.org/10.7840/kics.2014.39A.7.431
  8. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  9. R. G. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-124, Jul. 2007. https://doi.org/10.1109/MSP.2007.4286571
  10. M. E. Eltayeb, T. Y. AI-Naffouri, and H. R. Bahrami, "Compressive sensing for feedback reduction in MIMO broadcast channels," IEEE Trans. Commun., vol. 62, no. 9, pp. 3209-3222, Sept. 2014. https://doi.org/10.1109/TCOMM.2014.2347964
  11. H. Song, W. Seo, and D. Hong, "Compressive feedback based on sparse approximation for multiuser MIMO systems," IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 1017-1023, Feb. 2010. https://doi.org/10.1109/TVT.2009.2035042
  12. J.-H. Kim, I.-K. Kim, J.-S. Park, H.-Y. Song, and S.-W. Han, "Channel state information feedback scheme based on non-convex compressed sensing for massive MIMO systems," J. KICS, vol. 40, no. 7, pp. 628-636, Apr. 2015. https://doi.org/10.7840/kics.2015.40.4.628
  13. M. S. Sim, J. Park, and C.-B. Chae, "Compressed channel feedback for correlated massive MIMO systems," in Proc. KICS Conf. Commun. 2013, pp. 547-548, Seoul, Korea, Dec. 2013.
  14. S. Y. Irtaza, J. H. Yoo, and J. W. Choi, "Compressed sensing-based pilot reduction for FDD-based massive MIMO," in Proc. KICS Conf. Commun. 2016, pp. 486-467, Gangwon, Korea, Jan. 2016.
  15. X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, "Massive MIMO performance evaluation based on measured propagation data," IEEE Trans. Wirel. Commun., vol. 14, no. 7, pp. 3899-3911, Jul. 2015. https://doi.org/10.1109/TWC.2015.2414413
  16. B. Lee, J. Choi, J.-Y. Seol, D. J. Love, and B. Shim, "Antenna grouping based feedback compression for FDD-Based massive MIMO systems," IEEE Trans. Commun., vol. 64, no. 9, pp. 3261-3274, Sept. 2015.
  17. 3GPP TR 25.996, Spatial channel model for Multiple Input Multiple Output (MIMO) simulations, 12.0.0 ed., Apr., 1, 2016, from www.3gpp.org.
  18. Y. Shen and E. Martinez, "Channel estimation in OFDM systems," Freescale Semiconductor Application Note, Retrieved Apr., 2, 2016, from www.nxp.com.
  19. R. Srinivasan, ed., "IEEE 802.16m Evaluation Methodology Document (EMD)," IEEE 802.16m-Advanced Air Interface, Retrieved Mar., 30, 2016, from http://ieee802.org.
  20. COST Action 231, "Digital mobile radio towards future generation systems," European Commission tech. rep., Retrieved Mar., 29, 2016, from http://www.cost.eu.

피인용 문헌

  1. 협력 인지 통신망에서의 전 이중 통신 vol.41, pp.11, 2016, https://doi.org/10.7840/kics.2016.41.11.1374
  2. FTN 기반 전송 시스템의 성능 평가 기준에 관한 연구 vol.41, pp.11, 2016, https://doi.org/10.7840/kics.2016.41.11.1645