DOI QR코드

DOI QR Code

Study on future electronic device using graphene

그래핀을 이용한 전자소자 연구

  • 이상경 (광주과학기술원 신소재 공학부) ;
  • 김윤지 (광주과학기술원 신소재 공학부) ;
  • 이병훈 (광주과학기술원, 미래전자소자 연구센터)
  • Published : 2016.03.30

Abstract

Although graphene has been considered as one of the promise materials for future logic devices due to extremely high mobility, its applications in electronics have been limited to a few cases such as a flexible interconnect, and RF devices. Furthermore, most of the studies on graphene devices reported unstable operations, claimed to be due to the poor quality of graphene. Nevertheless, recent studies showed that the electrical performance of graphene field effect transistor could be stabilized even with CVD graphene when well-established integration processes to control the interface of graphene were used. These results indicate that as in the case of silicon devices, a proper control of graphene interface is very important for the stable operation of graphene device as well as other 2D material based devices.

Keywords

References

  1. H.-S.P. Wong, IBM Journal of Research and Development 46(2-3), 133 (2002). https://doi.org/10.1147/rd.462.0133
  2. Mark Bohr, Intel Developer Forum, (2014).
  3. P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, et al., IEDM, (2009).
  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  5. N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain, M. Bocat, P.-O. Sassoulas, X. Federspiel, A. Cros, et al., VLSI, (2012).
  6. A.K. Geim, K.S. Novoselov, Nature materials 6, 183 (2007). https://doi.org/10.1038/nmat1849
  7. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Communications 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  8. S. Takagi, A. Toriumi, M. Iwase, H. Tango, IEEE Trans. Electron Devices 41(12), 2357 (1994). https://doi.org/10.1109/16.337449
  9. X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011). https://doi.org/10.1021/ja109793s
  10. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Kim, Y. Song, Y. Kim, K. Kim, B. Ozyilmaz, J. Ahn, B. Hong, S. Iijima, Nature nanotechnology 20, 574 (2010).
  11. B. Fallahazad, K. Lee, G. Lian, S. Kim, C.M. Corbet, D.A. Ferrer, L. Colombo, E. Tutuc, Appl. Phys. Lett. 100, 093112 (2012). https://doi.org/10.1063/1.3689785
  12. F. Speck, M. Ostler, J. Rohrl, K.V. Emtsev, M. Hundhausen, L. Ley, and T. Seyller, Phys. Status Solidi C 7, 398 (2010). https://doi.org/10.1002/pssc.200982496
  13. Y. Xuan, Y.Q. Wu, T. Shen, M. Qi, M.A. Capano, J.A. Cooper, and P.D. Ye, Appl. Phys. Lett. 92, 013101 (2008). https://doi.org/10.1063/1.2828338
  14. B. Lee, S.-Y. Park, H.-C. Kim, K. Cho, E.M. Vogel, M.J. Kim, R.M. Wallace, and J. Kim, Appl. Phys. Lett. 92, 203102 (2008). https://doi.org/10.1063/1.2928228
  15. YG. Lee, CG. Kang, U. Jung, J. Kim, H. Hwang, H. Chung, S. Seo, R. Choi, BH. Lee, Appl. Phys. Lett. 98, 183508 (2011). https://doi.org/10.1063/1.3588033
  16. A. A.Sagade, D. Neumaier, D. Schall, M. Otto, A. Pesquera, A. Centeno, A. ZurutuzaElorza, and H. Kurz, Nanoscale 7, 3558 (2015). https://doi.org/10.1039/C4NR07457B
  17. H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, ACS Nano 4, 7221 (2010). https://doi.org/10.1021/nn101950n
  18. A. Veligura, P.J. Zomer, I.J. Vera-Marun, C. Jozsa, P.I. Gordiichuk, and B.J. van Wees, J. Appl. Phys. 110, 113708 (2011). https://doi.org/10.1063/1.3665196
  19. G. Kalon, Y.J. Shin, V.G. Truong, A. Kalitsov, and H. Yang, Appl. Phys. Lett. 99, 083109 (2011). https://doi.org/10.1063/1.3626854
  20. J. Mohrmann, K. Watanabe, T. Taniguchi, and R. Danneau, Nanotechnology 26, 015202 (2014).
  21. CG.Kang, YG.Lee, SK.Lee, E.Park, C.Cho, S.Lim, H.Hwang, BH.Lee, Carbon 53, 182 (2013). https://doi.org/10.1016/j.carbon.2012.10.046
  22. H. Sojoudi, J. Baltazar, C. Henderson, and S. Graham, J. Vac. Sci. Technol. B 30, 041213 (2012). https://doi.org/10.1116/1.4731472
  23. J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, and E.M. Vogel, (2012).
  24. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007). https://doi.org/10.1038/nmat1967
  25. Y. Yang, K. Brenner, and R. Murali, Carbon 50, 1727 (2012). https://doi.org/10.1016/j.carbon.2011.12.008
  26. M. Drapeko, Appl. Phys. Lett. 104, 221604 (2014). https://doi.org/10.1063/1.4881841
  27. C.W. Jang, J.H. Kim, J.M. Kim, D.H. Shin, S. Kim, and S.-H. Choi, Nanotechnology 24, 405301 (2013). https://doi.org/10.1088/0957-4484/24/40/405301
  28. C. Hummel, F. Schwierz, A. Hanisch, and J. Pezoldt, Phys. Status Solidi B 247, 903 (2010).
  29. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G.W. Flynn, and L.E. Brus, Nano Lett. 10, 4944 (2010). https://doi.org/10.1021/nl1029607
  30. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G.W. Flynn, L.E. Brus, Nano Lett. 10, 4944 (2010). https://doi.org/10.1021/nl1029607
  31. I. Jung, D. Dikin, S. Park, W. Cai, S.L. Mielke, R.S. Ruoff, J. Phys. Chem. C 112, 20264 (2008). https://doi.org/10.1021/jp807525d
  32. J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, and E.M. Vogel, ACS Nano 6, 3224 (2012). https://doi.org/10.1021/nn300107f
  33. BH. Lee, YG. Lee, U. Jung, Y. Kim, H. Hwang, J. Kim, CG. Kang, Carbon Lett. 13, 23 (2012). https://doi.org/10.5714/CL.2012.13.1.023
  34. Y.H. Zhang, H.R. Zhang, B. Wang, Z.Y. Chen, Y.Q. Zhang, B. Wang, Y.P. Sui, B. Zhu, C.M. Tang, X.L. li, X.M. Xie, G.H. Yu, Z. Jin, X.Y. Liu, Appl. Phys. Lett. 104, 143110 (2014). https://doi.org/10.1063/1.4871000
  35. X. Chen, Z. Liu, C. Zheng, F. Xign, X. Yan, Y. Chen, J. Tian, Carbon 56, 271 (2013). https://doi.org/10.1016/j.carbon.2013.01.011
  36. C. Cho, YG. Lee, U. Jung, CG. Kang, S. Lim, H. Hwang, H. Choi, BH. Lee, Appl. Phys. Lett. 103, 083110 (2013). https://doi.org/10.1063/1.4818770
  37. M. Jang, T.Q. Trung, J.-H. Jung, B.-Y. Kim, and N.-E. Lee, Phys. Chem. Chem. Phys. 16, 4098 (2014). https://doi.org/10.1039/c3cp53900h
  38. H.J. Jeong, H.Y. Kim, S.Y. Jeong, J.T. Han, K.-J. Baeg, J.Y. Hwang, and G.-W. Lee, Carbon 66, 612 (2014). https://doi.org/10.1016/j.carbon.2013.09.050
  39. K. Kumar, Y.-S. Kim, and E.-H. Yang, Carbon 65, 35 (2013). https://doi.org/10.1016/j.carbon.2013.07.088
  40. C.-J. Shih, G.L.C. Paulus, Q.H. Wang, Z. Jin, D. Blankschtein, and M.S. Strano, Langmuir 28, 8579 (2012). https://doi.org/10.1021/la3008816
  41. X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A.R. Hight Walker, Z. Liu, L. Peng, and C.A. Richter, ACS Nano 5, 9144 (2011). https://doi.org/10.1021/nn203377t
  42. J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, and R.S. Ruoff, Nano Lett. 13, 1462 (2013). https://doi.org/10.1021/nl304420b
  43. M.J. Hollander, M. Labella, Z.R. Hughes, M. Zhu, K.A. Trumbull, R. Cavalero, D.W. Snyder, X. Wang E. Hwang, S. Datta, J.A. Robinson, Nano Letters 11, 3601 (2011). https://doi.org/10.1021/nl201358y
  44. R. Rammula, L. Aarik, A. Kasikov, J. Kozlova, T. Kahro, L. Matisen, A. Niilisk, H. Alles, and J. Aarik, IOP Conf. Ser. Mater. Sci. Eng. 49, 012014 (2013).
  45. Y. Zhang, Z. Qiu, X. Cheng, H. Xie, H. Wang, X. Xie, Y. Yu, and R. Liu, J. Phys. Appl. Phys. 47, 055106 (2014). https://doi.org/10.1088/0022-3727/47/5/055106
  46. V. Wheeler, N. Garces, L. Nyakiti, R. Myers-Ward, G. Jernigan, J. Culbertson, C. Eddy Jr., D. Gaskill, Carbon 50, 2307 (2012). https://doi.org/10.1016/j.carbon.2012.01.050
  47. YG. Lee, CG. Kang, C. Cho, Y. Kim, H. Hwang, BH. Lee, Carbon 60, 453 (2013). https://doi.org/10.1016/j.carbon.2013.04.060
  48. S. Russo, M.F. Craciun, M. Yamamoto, A.F. Morpurgo, S. Tarucha, Physica E 42, 677 (2010). https://doi.org/10.1016/j.physe.2009.11.080
  49. K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Appl. Phys. Lett. 97, 143514 (2010). https://doi.org/10.1063/1.3491804
  50. C. Cho, SK. Lee, JW. Noh, W. Park, S. Lee, YG. Lee, H. Hwang, CG. Kang, M. Ham, BH. Lee, Appl. Phys. Lett. 106, 213107 (2015). https://doi.org/10.1063/1.4921797
  51. SM. Song, JK. Park, OJ. Sul, BJ. Cho, Nano Letters 12, 3887 (2012). https://doi.org/10.1021/nl300266p
  52. J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, and R.S. Ruoff, ACS Nano 5, 6916 (2011). https://doi.org/10.1021/nn201207c
  53. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K.P. Loh, ACS Nano 5, 9927 (2011). https://doi.org/10.1021/nn203700w
  54. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Nat. Commun. 3, 699 (2012). https://doi.org/10.1038/ncomms1702
  55. X.-D. Chen, Z.-B. Liu, W.-S. Jiang, X.-Q. Yan, F. Xing, P. Wang, Y. Chen, and J.-G. Tian, Sci. Rep. 3, (2013).
  56. M. Kim, H. An, W.-J. Lee, and J. Jung, Electron. Mater. Lett. 9, 517 (2013). https://doi.org/10.1007/s13391-013-0038-9
  57. J. Lee, Y. Kim, H.-J. Shin, C. Lee, D. Lee, C.-Y. Moon, J. Lim, and S.C. Jun, Appl. Phys. Lett. 103, 103104 (2013). https://doi.org/10.1063/1.4819740
  58. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong, and J.-H. Ahn, Nano Lett. 10, 490 (2010). https://doi.org/10.1021/nl903272n
  59. G.H. HAN, H.-J. SHIN, E.S. KIM, S.J. CHAE, J.-Y. CHOI, and Y.H. LEE, Nano 06, 59 (2011). https://doi.org/10.1142/S1793292011002342
  60. J. Kang, S. Hwang, J.H. Kim, M.H. Kim, J. Ryu, S.J. Seo, B.H. Hong, M.K. Kim, and J.-B. Choi, ACS Nano 6, 5360 (2012). https://doi.org/10.1021/nn301207d
  61. C.J.L. de la Rosa, J. Sun, N. Lindvall, M.T. Cole, Y. Nam, M. Loffler, E. Olsson, K.B.K. Teo, and A. Yurgens, Appl. Phys. Lett. 102, 022101 (2013). https://doi.org/10.1063/1.4775583
  62. W.C. Shin, T. Yoon, J.H. Mun, T.Y. Kim, S.-Y. Choi, T.-S. Kim, and B.J. Cho, Appl. Phys. Lett. 103, 243504 (2013). https://doi.org/10.1063/1.4846317
  63. J. Song, F.-Y. Kam, R.-Q. Png, W.-L. Seah, J.-M. Zhuo, G.-K. Lim, P.K.H. Ho, and L.-L. Chua, Nat. Nanotechnol. 8, 356 (2013). https://doi.org/10.1038/nnano.2013.63
  64. D.-Y. Wang, I.-S. Huang, P.-H. Ho, S.-S. Li, Y.-C. Yeh, D.-W. Wang, W.-L. Chen, Y.-Y. Lee, Y.-M. Chang, C.-C. Chen, C.-T. Liang, and C.-W. Chen, Adv. Mater. 25, 4521 (2013). https://doi.org/10.1002/adma.201301152
  65. S. Cha, M. Cha, S. Lee, J.H. Kang, and C. Kim, Sci. Rep. 5, (2015).
  66. C. Vilani, E.C. Romani, D.G. Larrude, G.M. Barbosa, and F.L. Freire, Appl. Surf. Sci. 356, 1300 (2015). https://doi.org/10.1016/j.apsusc.2015.08.256
  67. S. Lee, SK. Lee, CG. Kang, C. Cho, YG. Lee, U. Jung, BH. Lee, Carbon 93, 286 (2015). https://doi.org/10.1016/j.carbon.2015.05.038
  68. U. Gosele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad, K. Scheerschmidt, Appl. Phys. Lett. 67, 3614 (1995). https://doi.org/10.1063/1.115335
  69. YJ. Kim, YG. Lee, U. Jung, S. Lee, SK. Lee, BH. Lee, Nanoscale 7, 4013 (2015). https://doi.org/10.1039/C4NR06397J
  70. A timeline of Semiconductors in Computers, http://www.computerhistory.org/siloconengine/